
Extended Tracking Powers:
Measuring the Privacy Diffusion Enabled by Browser

Extensions

Oleksii Starov
Stony Brook University

ostarov@cs.stonybrook.edu

Nick Nikiforakis
Stony Brook University

nick@cs.stonybrook.edu

ABSTRACT
Users have come to rely on browser extensions to realize
features that are not implemented by browser vendors. Ex-
tensions offer users the ability to, among others, block ads,
de-clutter websites, enrich pages with third-party content,
and take screenshots. At the same time, because of their
privileged position inside a user’s browser, extensions have
access to content and functionality that is not available to
webpages, such as, the ability to conduct and read cross-
origin requests, as well as get access to a browser’s history
and cookie jar.

In this paper, we report on the first large-scale study of
privacy leakage enabled by extensions. By using dynamic
analysis and simulated user interactions, we investigate the
leaking happening by the 10,000 most popular browser ex-
tensions of Google Chrome and find that a non-negligible
fraction leaks sensitive information about the user’s brows-
ing habits, such as, their browsing history and search-engine
queries. We identify common ways that extensions use to
obfuscate this leakage and discover that, while some leakage
happens on purpose, a large fraction of it is accidental be-
cause of the way that extensions attempt to introduce third-
party content to a page’s DOM. To counter the inference of a
user’s interests and private information enabled by this leak-
age, we design, implement, and evaluate BrowsingFog, a
browser extension that automatically browses the web in a
way that conceals a user’s true interests, from a vantage
point of history-stealing, third-party trackers.

Keywords
Privacy diffusion; browser extensions; web tracking

1. INTRODUCTION
In recent years, there has been a significant amount of re-

search that aims to investigate the web tracking practices of
websites and offer technical countermeasures that users can
utilize. Researchers have shown that, among others, web-
sites use third-party cookies, Flash LSOs, and the browser

c©2017 International World Wide Web Conference Committee
(IW3C2), published under Creative Commons CC BY 4.0 License.
WWW 2017, April 3–7, 2017, Perth, Australia.
ACM 978-1-4503-4913-0/17/04.
http://dx.doi.org/10.1145/3038912.3052596

.

cache, to hide identifiers which can be used to track users
across websites [19, 20, 26, 27]. To withstand cookie dele-
tion, websites have also been found to engage in browser
fingerprinting where natural variations in a user’s brows-
ing environment are converted to near-unique user identi-
fiers [7, 8, 14,23].

A critical aspect of the modern browsing environment that
has, so far, escaped the attention of researchers is that of
browser extensions. Modern browser extensions are writ-
ten using HTML, JavaScript, and CSS, and are therefore as
capable of tracking users as websites. Moreover, browser ex-
tensions enjoy access to APIs that are out of reach of regular
websites (such as those allowing them to perform cross-origin
requests) which can make user tracking easier and more in-
trusive. Despite the great potential of abuse, the privacy
practices of browser extensions have not been investigated
systematically, with the only research that exists being that
of blog posts discussing the issue and manually analyzing a
handful of browser extensions [5, 6, 30].

To help better understand the phenomenon of tracking
through browser extensions, in this paper, we present the
first large-scale study of the privacy diffusion enabled by
browser extensions. We utilize the phrase “privacy diffu-
sion”, coined by Krishnamurthy and Wills in the context of
regular browsing [19], to capture the phenomenon of an ever-
increasing number of third-parties becoming privy to a user’s
browsing habits. Namely, we develop a dynamic-analysis
framework which we use to automatically analyze the 10,000
most popular Google Chrome extensions, in search of infor-
mation leakage, such as, extensions that leak a user’s brows-
ing history and search queries, to one or more third parties.
Through this process we discover that 6.3% of the evaluated
extensions perform some kind of leakage, with the majority
of these cases being accidental, i.e., leakage enabled by the
way that extensions introduce content in a visited website.

In terms of intentional leakage, we identify hundreds of
extensions that share a user’s browsing history with third
parties, in the context of offering that user a service, such
as, sending the currently-visited URL to third-party servers
in order to locate shopping coupons or assess its web ranking
and safety. While we manually analyze some of these exten-
sions and report our findings, this observation is overall trou-
bling since it complicates the assessment of an extension as
suspicious or not. This is because such an assessment would
require automated system to determine whether a leakage is
because of an extension’s stated goals, or is extraneous.

Motivated by this finding, we design and develop Brows-
ingFog, a countermeasure that allows users to protect their

privacy, while assuming the presence of one or more browsing-
data-leaking extensions. BrowsingFog is a browser exten-
sion that constantly evaluates a user’s browsing habits and
simulates visits to webpages of other random website cate-
gories, hiding a user’s real interests in a “fog” of irrelevant
information.

2. DATA COLLECTION AND ANALYSIS
To quantify the tracking practices of browser extensions,

we focus on Google Chrome and we analyze the 10,000 most
popular extensions available in the Chrome Store. Note
that, while Google Chrome was chosen due to its market
share, our system does not make use of any Chrome-specific
functionality hence it could be straightforwardly ported to
analyze the privacy leakage perpetrated in other extendable
browsers.

Detecting privacy leakage by browser extensions is akin to
detecting malware, a known hard problem. Since browser
extensions are written in JavaScript, extension developers
can use heavy obfuscation and dynamic code evaluation to
evade any checks done through static analysis. For our ap-
proach, we opted for dynamic analysis where an extension
is automatically installed in a monitored browser environ-
ment where the system provides stimuli and observes the
outgoing network requests in search of leaked private infor-
mation. While this approach bypasses all the known issues
of static code analysis, our method, as most dynamic analy-
sis methods, may be prone to false negatives due to reduced
code coverage and the potential use of custom encryption
methods that will stop our network monitor from matching
the outgoing requests to known private information. For the
former issue (that of code coverage) we argue that if exten-
sion developers seek to opportunistically track a user’s online
behavior, this tracking should be straightforwardly triggered
by the user merely browsing on the web. For the latter is-
sue (that of custom encryption and obfuscation), there exist
many prior papers on detecting the leakage of Personally-
Identifiable Information which share the same limitations
with our work, and yet have provided significant utility to
their users [24,25,28].

Figure 1 shows our developed system for installing and
analyzing browser extensions. The core automation is im-
plemented using Selenium’s ChromeDriver [2]. Each exten-
sion is automatically installed in an instance of the Google
Chrome browser before the browser is automatically navi-
gated to hundreds of webpages and made to interact with
them. All traffic originating from the monitored browser is
channeled through an instance of mitmproxy [3] which cap-
tures packet traces on all ports greater than 22, so as to cap-
ture standard HTTP/HTTPS requests as well as outgoing
traffic using non-standards ports, e.g., enabled by extensions
with proxying capabilities.

While it is certainly possible to navigate to popular sites
with and without an extension and compare the outgoing
requests (in search of new requests carrying private infor-
mation), this approach brings a whole host of problems re-
lated to the dynamic nature of the web. Due to third-party
advertisements, featured content, and client-side widget in-
tegration, the same URL can be visited multiple times only
seconds apart, and yet result in significantly different outgo-
ing requests. In these cases, the attribution of a request to
the evaluated extension or the website itself becomes chal-
lenging, and heuristic-based methods are bound to be sus-

Extensions

Internet

Prepared
URLs

ChromeDriver

MITM Proxy

Traffic Dumps

Mock page

(1) install extension (2) visit URLs (3) submit forms

Figure 1: System for the dynamic analysis of browser extensions
for information leakage.

ceptible to false positives and false negatives. In our work,
we circumvent this problem by never really visiting remote
websites, but only pretending to visit them by resolving
them on our local machine and serving a mock page with
known, static content. As before, we expect leaking browser
extensions to opportunistically send a user’s web traffic to
third-party servers and hence we see no reason why an ex-
tension would try to evaluate whether a website is “real”,
before leaking its URL to the outside world.

In the following sections we explain in more detail: (1)
what private information we consider to be sensitive; (2)
how we define a privacy leakage and third-parties; (3) how
we inspect the captured traffic to detect leakage of private
information to a third-party.

2.1 Types of private information
In the current study we measure extension-based leakage

of the following types of private information:

• History leakage (HL): We detect History Leakage
by visiting several hundreds of the web’s most popular
URLs. Specifically, we focused on the top 50 Alexa
domains, where for each domain we retrieved up to
20 popular URLs and subdomains using suggestions
from the Bing search engine. In total, each extension
is exposed to 780 URLs, which resolve to 308 different
subdomains. The resulting number of requests allows
us to detect the accidental leakage of browsing history
via the HTTP Referer header (e.g. when an extension
embeds a remote object on every visited webpage), as
well as trigger the intentional tracking behavior of ex-
tensions, regardless of method of history exfiltration
(e.g. leaking each individual request, or leaking URLs
in batches). For the latter type of history leakage, we
detect both the leakage of the entire visited URL as
well as the main domain of each visited website.

• Search query leakage (SL): We detect Search-Query
leakage by automating Google searches and looking for
the presence of our queries in outgoing traffic towards
unrelated third parties. We chose to decouple search-
query leakage from generic history leakage since it is
entirely possible that a third-party tracker is only in-
terested in the search queries of users and keeps a low
tracking footprint by avoiding the leakage of entire do-
mains and URLs.

• Form data leakage (FL): By submitting a mock
HTML form with specific values on several URLs, and
later searching for these values being transmitted to a
third party in the captured traffic, we can detect the
leakage of data that a user explicitly types in HTML
forms. To identify leaks even when the information is
slightly obfuscated, we utilize a method that we devel-
oped in past work [28], where we submit a form three
times, two with the same and one with a changed in-
put, and search for the same behavior in obfuscated
payloads of outgoing requests.

• Information about other extensions (EL): Since
a browser extension can list other extensions installed
in the user’s browser, we also created scenarios to ac-
count for “extension-information leakage”. Namely, by
installing the under-test extension simultaneously with
other extensions (e.g., a sensitive one like Mailvelope
for encrypted communication via email), we can later
search for the presence of extension identifiers in out-
going traffic.

2.2 Defining privacy leakage
We define privacy leakage to be an event where any of

the aforementioned private data (e.g., browsing or search
history, information submitted through HTML forms, and
lists of installed extensions) is transmitted to a third-party
server. If a leakage happens because of a specific browser ex-
tension, we say that this extension enables privacy diffusion
of a user’s sensitive information.

In this paper, we consider as a third-party any domain
that does not share the TLD+1 part with the first-party
visited domain (or any distinct IP address). Hence, if the
first-party website is www.example.com, a request towards
log.tracker.com is a third-party request, but a request to-
wards members.example.com is not. In practice, this defi-
nition may capture benign cases, such as, private domains
used by a browser extension for their own backend APIs, as
well as true tracking cases, such as, third parties who have
no relationship with a given extension. For the former case,
an extension that requires the capturing of private informa-
tion to achieve its stated goals must provide a proper privacy
policy which described what data is gathered, and how that
data is handled and warehoused. For the latter case, the ex-
filtrated data was never necessary for the correct operation
of the extension, hence each such request further diffuses a
user’s online privacy.

For the rest of this paper, we try to distinguish between
accidental and intentional privacy leakage, and report our
findings accordingly. For example, leakage that happens via
the HTTP Referer header is, in most cases, accidental and
stems from the way third-party content is introduced in web
pages. Contrastingly, a highly obfuscated POST request
from an extension’s background page can be classified as
“intentional”, since this request cannot have reasonably oc-
curred by accident. It is worth mentioning that with the
term “intentional” we do not mean “malicious” or “intru-
sive.” We merely mean that an extension, whether through
its own code or through that of embedded SDKs, explicitly
sends a user’s private information to a third party. Whether
that request is malicious or intrusive, largely depends upon
an extension’s stated goals.

Listing 1 Obfuscation used by known tracking libraries
// upalytics.com and wips.com
base64(base64(payload))

// fairsharelabs.com
btoa(pako.deflate(root.dca_compressor.utf16to8(
JSON.stringify(requests)), {to: "string"}));

// prestadb.net
utf8Str = ANALYTICS.utils.utf16to8(
JSON.stringify(batchPool));
uint8Array = compressor.deflate(utf8Str);
encodedData = utils.encode(bin2String(uint8Array));
ANALYTICS.xhr.sendPost(dataUrl , {}, encodedData);

Algorithm 1 Pseudocode of the traffic analysis to detect
obfuscated information leakage

for extension in extensions do
for request in getTrafficDump(extension) do

if isThirdParty(request) then
. From query string, body, headers and cookies
queue← extractValues(request)
iteration← 0
while !queue.empty() & iteration < MAX do

iteration← iteration + 1
value← dequeue(queue)
if len(value) < 5 then

continue
checkForLeakage(value)
. From URL encoding, JSON, base64, deflate,
. or key=value&key=value...
newV alues← tryDecode(value)
if newValues then

enqueue(queue, newV alues)
continue

2.3 Traffic analysis
As mentioned in Section 2.1, our framework installs an ex-

tension, provides opportunities for privacy leakage, and then
analyzes the captured outgoing traffic for instances of that
leakage. In the case of plain-text leakage, such as, acciden-
tal leakage through the HTTP Referer header, discovering
that leakage is a straightforward string search of known pri-
vate information in outgoing requests, either in their orig-
inal or URL-encoded form. Note that leakage done over
HTTPS is captured by this method since our framework
uses a mitmproxy-provided certificate which allows requests
and responses to be decrypted before stored.

At the same time, extensions that are involved in in-
tentional tracking are free to use various types of obfus-
cations especially when they seek to avoid detection. Ac-
cording to prior reports on the ability of extensions to track
users [5,6,30] as well as our manual analysis of known track-
ing extensions, the most popular encoding/obfuscating tech-
niques used by the current generation of tracking extensions
are the following: URL encoding, base64, repeated base64,
gzip/deflate, and JSON-packing. Examples of such obfus-
cation are shown in Listing 1. If an extension does not leak
information in plain text and does not utilize one or combi-
nation of the aforementioned obfuscation schemes, our cur-
rent methodology will unfortunately not be able to detect
the exfiltration of private information.

Algorithm 1 illustrates our method for identifying user-
data-leaking requests using different combinations of known
encodings. We extract individual parameters from third-
party requests and iteratively attempt to de-obfuscate them
separately. A challenge that we need to overcome is that it is

www.example.com
log.tracker.com
members.example.com

Table 1: Top 20 TLD+1 domains called by extensions when
browsing popular websites

Domain # Extensions
google-analytics.com 1,700

google.com 936
googleapis.com 828

gstatic.com 823
doubleclick.net 818
facebook.com 530
facebook.net 467

fbcdn.net 274
twitter.com 266

googlesyndication.com 252
100pages.top 194
adnxs.com 179

cloudflare.com 178
yahoo.com 174

cloudfront.net 172
2mdn.net 163

amazonaws.com 158
youtube.com 149
addthis.com 141

advertising.com 138

not always possible to automatically distinguish whether a
string was successfully and meaningfully decoded or not (e.g.
in case of base64), and thus we have to keep performing de-
obfuscation attempts, either until the parameters degenerate
to very short strings, or until we reach a predefined thresh-
old. From our pilot tests and analysis of random extension
samples, we discovered that a limit of 1,000 iterations is
sufficient to uncover leakage while bounding the time spent
on the analysis of each individual extension. Even though
an attacker can clearly utilize more than 1,000 layers of ob-
fuscation to evade our current architecture, our framework
can be straightforwardly extended to count the JavaScript-
level calls to obfuscation-related APIs that each extension
makes (e.g. through wrapping these APIs or modifying the
underlying browser code). Extensions that make heavy use
of these APIs can by flagged during dynamic analysis and
further investigated.

3. ANALYSIS OF RESULTS
In this section, we first report the statistics of the detected

cases of browser extensions leaking private information to
third parties, and then describe the different types of acci-
dental and intentional leakage that we discovered and the
third parties contacted.

From the top 10K extensions, our framework was able to
successfully download and install 9,839 extensions. 38% of
these extensions make new requests towards third parties
and, on average, each extension contacts six different third-
party hosts. Overall, the installed extensions contacted a
total of 3,526 unique third-party domains (TLD + 1) with
the most popular third-party domains shown in Table 1.

One can see that many browser extensions use popular
tracking solutions like google-analytics.com, issue requests
to social APIs like facebook.com and twitter.com, and call
their own APIs hosted on amazonaws.com and those pro-
tected by cloudflare.com. Listing 2 shows a benign exam-
ple where an extension is using Google Analytics to track
its usage, i.e., track the installation and update events. We
argue that while this extension causes new third-party re-

Listing 2 Popular usage of Google Analytics on an exten-
sion’s background page
_gaq.push([’_trackEvent ’, ’Install ’, chrome.app.

getDetails ().version]);
...
_gaq.push([’_trackEvent ’, ’Update ’, chrome.app.

getDetails ().version]);

quests, these requests do not leak any private information
towards google-analytics.com and therefore do not cause
unwanted privacy diffusion.

Once we move past the most popular third-party domains,
it is hard to reason, at a domain level, whether a third-
party was legitimately contacted by an extension or it was
contacted solely for the purpose of exfiltrating user data.
The fact that 66% of the 3,526 unique third-parties were
only contacted by a single extension further complicates the
request-attribution process. Moreover, according to Web-
Of-Trust statistics, only nine of the contacted third parties
are blacklisted and 61 have a very low trust score. For this
reason, in the rest of this section, we focus on domains and
extensions where our monitoring tool was able to detect ex-
plicit information leakage.

3.1 Detected leakage
Overall, our system allowed us to locate 618 extensions

(6.3%) that introduce privacy leaks of browsing and search
history, whether accidentally (245), intentionally (188), or
both (185). In addition to these 618 extensions, we found
33 extensions leaking information about other installed ex-
tensions, and 4 leaking data entered in web forms. Note
that, when compared to other types of unwanted extension
behavior, privacy-leaking extensions appear to be a much
more widespread phenomenon. Specifically, Kapravelos et
al. analyzed 48K extensions and found only 130 (0.27%)
malicious extensions [18], while Xing et al. analyzed 18K
extensions and discovered 348 (1.9%) extensions related to
advertising fraud [31]. Even though one could argue that
many extensions need to “leak” sensitive information as part
of their stated goals (e.g. the Web-Of-Trust extension needs
to know each webpage that a user visits so-as-to provide a
security score for that page), it is worrisome that only 10%
of these 618 extensions included the phrase “privacy policy”
in their Chrome Store descriptions.

The distribution of privacy-leaking browser extensions is
not uniform across rankings. Figure 2 illustrates that, in
general, more popular extensions tend to leak more often
than less popular ones, with the largest fraction of leaking
extensions concentrated in the top 1,000-3,000 range. More-
over, for the top 3K extensions, we can see that accidental
leakage happens significantly more than intentional leakage.
One reasonable explanation is that these popular extensions
attempt to provide more utility to their users and end-up in-
cluding many more third-party libraries in a way that causes
accidental leakage, e.g., through the Referer header of third-
party HTTP requests. We provide more insights into this
accidental leakage, later in this section.

By comparing the percentage of leakage across extension
categories, it becomes clear that certain types of extensions
are more prone to accidental and intentional leakage. As
Table 2 illustrates, the “shopping” category of extensions
has the largest percentage of accidental and intentional leak-

google-analytics.com
facebook.com
twitter.com
amazonaws.com
cloudflare.com
google-analytics.com

0

25

50

75

100

1−1000 1000−2000 2000−3000 3000−4000 4000−5000 5000−6000 6000−7000 7000−8000 8000−9000 9000−10000
Extension popularity

of

 le
ak

in
g

ex
te

ns
io

ns Leakage: Any Accidental Intentional

Figure 2: Distribution of the detected privacy leaking extensions from the less to the most popular. Higher-ranked extensions tend to
leak more with the larges fraction on the range of the top 1000-3000.

Table 2: Fraction of leaking extensions by category
Category # Ext. Accidental Intentional

Productivity 3528 2.5% 2.4%
Fun 1268 3.5% 2.0%

Social & Commun. 1226 8.3% 5.0%
Developer Tools 965 1.3% 2.8%

Accessibility 871 3.3% 2.4%
Search Tools 631 4.1% 5.9%

Shopping 443 20.7% 21.0%
Unknown 340 6.1% 5.0%

News & Weather 314 2.2% 1.2%
Photos 189 1.0% 0.5%

Blogging 121 4.1% 0.8%
Sports 104 0.9% 0.9%

age. Extensions belonging to this category usually intention-
ally request different third-party APIs that reveal a user’s
browsing history (e.g., to get relevant offers for the currently
viewed product, or search for similar items in other stores).
Furthermore, any useful information found is usually pre-
sented by injecting highly noticeable widgets in the main
page’s DOM, which can cause further third-party requests
for images, JavaScript and CSS, leading to accidental leak-
age via the Referer header. Next, we see that social exten-
sions tend to leak private information accidentally, which
again can happen because of injected widgets, panels, and
styles.

Accidental leakage via the HTTP Referer header
Our extension-analysis framework flagged 430 extensions as
ones leak browsing history to, on average, two third-party
domains per leaking extension. These extensions include the
ones that solely leak information via the Referer header, as
well as those that leak information via the Referer header as
well as through other intentional methods. Table 3 shows
the 20 domains that receive the most accidentally leaked
private information, both in terms of history leakage (HL)
as well as search-query leakage (SL). By manually analyzing
these extensions we witnessed that, in most cases, the acci-
dental leakage happens because of additional elements (e.g.,
images, JavaScript, CSS, custom DOM items) being injected
in the visited webpages via an extension’s content scripts.
These injected resources, upon loading, leak the browsing
history to third parties via the HTTP Referer header. Even
though these extensions leak a user’s history in a piecemeal
fashion (URL after URL), the third-parties receiving these
requests can accurately reconstruct a user’s entire browsing
history and use it to infer sensitive information about a user.

An unexpected discovery was that a number of extensions
introduce custom toolbars to the visited webpages (examples

shown in Figure 3). It is worth noting that, Google Chrome,
was one of the first browsers that consciously moved away
from allowing extensions to create toolbars in the browser’s
UI. Therefore, the extensions that still want to show users a
toolbar, now need to construct that toolbar out of HTML,
CSS, and JavaScript and inject it in every page that a user
visits. Every time that these toolbars are injected, they
trigger third-party requests, leaking each and every URL
to the third-parties providing resources associated with the
creation of each toolbar.

Table 4 shows the most popular privacy leaking exten-
sions. There we see many popular shopping extensions (in-
cluding the security-oriented Avast SafePrice) and exten-
sions for social platforms and news-curating websites. Many
of these extensions have millions of users who are likely not
aware that one or more third parties get to reconstruct their
entire browsing history because of a specific extension that
they downloaded.

At the same time, among the 430 extensions we also found
several suspicious cases. For instance, the Ask Wiki exten-
sion, which had almost 1,000 users, sent all visits to the
suspicious analyticssgoogle.com domain via the Referer
header (likely trying to pose as google-analytics.com).
Similarly, we discovered two extensions that were outliers in
terms of their leakage (leaking to more than 20 third parties)
named “YouTubeTM WindowChrome Extensions Archive”
and “Facebook Room”. All three extensions disappeared
from the extension store, approximately one month after we
first downloaded them.

Intentional non-Referer-related leakage
Analyzing the top 10K browser extensions, our framework
discovered 373 extensions that perform intentional privacy
leakage of browsing history and search queries, leaking to
an average of 1.5 third parties per extension. By intentional
leakage we mean that private information is sent to third
parties in GET or POST parameters, body, cookies or other
custom headers, excluding the HTTP Referer header. As we
mentioned earlier, intentional leakage does not necessarily
mean leakage with malicious/suspicious intents. It merely
means that an extension developer consciously sends a user’s
visited URLs to one or more third-parties in a way that could
not have happened by accident (such as the case of leakage
via the Referer header).

Table 5 shows the most popular third-party domains that
receive the leaked information. One of the first things that
one will notice is that some extensions indeed use Google
Analytics for intentional tracking, e.g., the “Flatbook” ex-
tension for Facebook (with almost 700K active users) in-

analyticssgoogle.com
google-analytics.com

Figure 3: Examples of extension-injected content that increases privacy diffusion (from the top): Avast SafePrice (10,000,000+ users,
adds ‘fonts.googleapis.com’), MozBar (360,977 users, adds 4 third-parties), SEOquake (323,683 users, adds 8 third-parties).

Table 3: Top 20 third parties that accidentally receive browsing
history and search queries

Domain # HL # SL
google-analytics.com 38 5

googleapis.com 38 5
amazonaws.com 29 3

hwcdn.net 15 2
google.com 14 0
okstiker.ru 14 0

purplestats.com 14 13
doubleclick.net 12 0
cloudfront.net 11 5

urlvalidation.com 11 11
facebook.com 10 3
akamaihd.net 9 7

ssl-services.com 8 0
aferon.com 8 8
jfduv7.com 8 0
superyt.ru 8 0

srvtrck.com 8 0
similardeals.net 7 2
cloudflare.com 7 1
apymob.com 6 0

Table 4: Top 20 extensions that increase privacy diffusion via
HTTP Referer

Extension #Users #Parties
Avast SafePrice 10M+ 1

Avast Online Security 10M+ 1
ZenMate VPN 3,7M 1

Reddit Enhancement Suite 2,3M 1
Honey 1,7M 1

MySmartPrice 965K 11
ShopAtHome.com 938K 4

MusicSig vkontakte 837K 2
SocialLife for Google Chrome 800K 1

SearchLock 765K 1
Flatbook 697K 1

Ebates Cash Back 682K 2
Hootsuite Hootlet 491K 2

SwagButton 451K 2
Keepa - Amazon Price Tracker 410K 1

New XKit 366K 1
MozBar 356K 4

SEOquake 312K 8
Facebook Video Downloader 289K 7

283K 3

jects analytic scripts when users visit Facebook pages to
receive statistics about their browsing sessions. Second,
among other popular third-parties we again see “big play-
ers”, such as, Google and Facebook. Our manual analysis of
leaks towards these third parties, revealed that these cases

occur because of extensions which access Facebook APIs for
social-network-related statistics on the visited pages, and
Google APIs for ranking information and for storing URLs
in Google bookmarks.

From our analysis of the extensions marked as intention-
ally leaking, we argue that while there is indeed some activ-
ity associated with shady trackers that inject similar track-
ing code across multiple seemingly unrelated extensions (as
first observed by the authors of the blog posts that inspired
this work [5,30]), most extensions appear to be leaking to dif-
ferent domains that we cannot reasonably cluster together.
We base this claim on the following findings: i) 93.3% of
the extensions that intentionally leak a user’s private details
do not utilize complicated obfuscation techniques sending
the data either in the clear, or using simple URL encoding
and ii) the information-receiving third-party domains resolve
to 353 distinct IP addresses which, when grouped based on
domain-name and IP-address similarity, result in 205 unique
clusters.

Nevertheless, we investigate the most likely cases of in-
trusive trackers. Out of the clustered third parties, only 77
receive private data from two or more distinct extensions
and therefore are likely to belong to shared libraries or ser-
vices. They affect 250 extensions overall, out of which more
than 20% send the data solely to Google Analytics. In Fig-
ure 4 we abstract away from specific examples of these third
parties and show the relationship between the number of
third-party requests and their size, for each analyzed ex-
tension. Third-party requests within each extension-testing
session are aggregated by the subdomain and path, in order
to understand activity of different third-party APIs. There,
we see that domains which we identified as tracking tend
to cluster together. This could help analysts identify other
tracking extensions which, because of higher-levels of obfus-
cation, our monitoring framework was not able to flag them
as information-leaking ones.

In terms of suspicious activity, we were able to group 30
seemingly unrelated domain names as those belonging to
a single entity with names, such as, the following: imp.

searchpat.com, imp.searchffr.com, imp.searchflm.com,
imp.myemailxp.com and imp.myradioxp.com. Among the
extensions that intentionally leaked information about other
browser extensions to these domains, was an extension ti-
tled “LoginFaster” that has already disappeared from the
store previously having 446K active users. Other suspicious
leaking extensions are: My Email XP (360K users), My
Maps XP (76K), The Package Tracker (56K) and Find Free
Recipes (47K) with privacy policies hosted on searchpat.

com and searchffr.com correspondingly. We discovered
that those extensions share the same code template to send
impressions about the usage of their extensions, but they

imp.searchpat.com
imp.searchpat.com
imp.searchffr.com
imp.searchflm.com
imp.myemailxp.com
imp.myradioxp.com
searchpat.com
searchpat.com
searchffr.com

Table 5: Top TLD+1 domains that receive intentionally-leaked
private information.

Domain # Extensions
History and Search

google-analytics.com 71
google.com 22

shortem.com 17
facebook.com 16
mixpanel.com 10
apollocdn.com 10
similardeals.net 8
freestikers.top 8
srvtrck.com 7

akamaihd.net 7
HL and SL obfuscated only

shortem.com 17
mixpanel.com 10
cmptch.com 3
prestadb.net 2
pmddby.com 2

simmersprofession.com 2
odorousructions.com 1

adap.tv 1
newsprompt.co 1
musicsig.com 1

Extension Leakage
search*.com 18
my*xp.com 12
findizer.fr 1

theweathercenter.co 1
lsmdm.com 1

Form Leakage
pubsub.googleapis.com 2

gingersoftware.com 1
16mb.com 1

also capture such events like “enabled” or “uninstall” for all
installed extensions. Finally, our framework flagged four ex-
tensions as collecting information from HTML forms and
leaking them to third-parties.

3.2 Leakage over time
In this section we analyze the longitudinal trend on the

fraction of privacy leaking extensions in order to understand
whether the privacy diffusion that we measured just hap-
pened to occur in our snapshot of collected extensions or
whether it is a stable property of the browser extension
ecosystem. To that extent, we collect a second set of top
10K browser extensions (Enew) four months after our first
one (Eold), use our framework to uncover accidental and
intentional leakage, and compare the results.

By comparing the two sets of extensions, we find that more
than 13% of extension were substituted (Eold∩Enew ≈ 87%)
(some previously popular extensions are no longer part of the
top 10K) and another 22% updated their versions. Table 6
presents the number of detected privacy-leaking extensions
for both samples. We see that the number of extensions
leaking private information via HTTP Referer remains sta-
ble, with 430 versus 431 extensions detected in the history-
leakage and search-query leakage categories. This finding
reveals that accidental leakage happens because of popular

Table 6: Comparison of longitudinal results: history leakage
(HL), search leakage (SL), form leakage (FL), extension leakage
(EL).

HL & SL FL EL
Accidental (via Referer)

New sample 430 NA NA
Old sample 431 NA NA
Intersection 298 NA NA

Intentional (non-Referer)
New sample 373 4 33
Old sample 399 5 17
Intersection 250 4 14

Figure 4: Scatterplot showing the relationship of number of sim-
ilar requests to third-party domains and the average size of their
payload. Intentionally-leaking requests to tracking domains have
two main clusters: (1) one-time setup calls on the install; (2)
small-sized requests after each visit to a website. Alongside, we
capture repeated leaking calls and larger-sized batched requests.

functional requirements, e.g., the need to embed a remote
JavaScript library, which are likely to remain stable.

Contrastingly, the number of intentionally-leaking exten-
sions decreased by 6.5% for history leakage and search-engine
leakage, with only 63% of the extensions that were intention-
ally leaking in Eold, still leaking in Enew. At the same time,
for the extensions that did continue leaking, we observed
a “rotation” in terms of the third-party hosts that were on
the receiving side of intentional leakage where we recorded
traffic going towards new 74 third parties which we had not
observed when analyzing Eold.

Overall, through our longitudinal study we find that, while
accidental leakage is a stable property of the current exten-
sion ecosystem, intentional leakage and suspicious leakage
tends to vary. There may be many reasons for this observed
variance but one reasonable explanation is that when an ex-
tension receives significant negative publicity (such as the
ones discussed in the aforementioned blog posts [5,30]) they
are either removed from the market, or they remove the in-
trusive tracking functionality. Presumably, the companies
that benefit from this information leakage can always find
new extension developers that would be willing to incorpo-
rate their code for monetary benefits [16] or transfer owner-
ship of their extensions to them [22].

4. DISCUSSION
One could argue that, once an extension is discovered to

be involved in accidental or intentional leakage, users should
stop utilizing that extension and, for the more severe cases,

the extension should be removed from the extension store.
Note, however, that even using automated privacy-leakage-
discovery systems such as the one designed and evaluated
in this paper, extensions can amass tens of thousands of
downloads before they are detected and removed. As such,
we reason that, in addition to reactionary countermeasures,
we must provide users with tools to protect themselves for
the remaining window of time. In this section, we briefly
describe possible solutions on how to protect a user’s pri-
vacy, for the cases where extension developers are willing
to collaborate in reducing accidental leakage, as well as for
non-cooperative, intentional-leakage scenarios.

Combating accidental leakage
The main culprit for accidental privacy leakage is the HTTP
Referer header that is included with every third-party re-
quest that an extension requires. In general, extension de-
velopers may protect their users by overwriting such calls
and requesting internal pages of extensions instead, which
implement the actual HTTP requests to third parties. Sim-
ilarly, a Referer-hiding “proxy” could also be implemented
by using Chrome’s messaging APIs, redirecting calls to the
background page. In this case, requests towards the outside
world would just reveal the extension’s identifier through the
HTTP Origin header. To facilitate such privacy-preserving
architectures, the browser may implement specific APIs for
HTTP requests, either for proxying or merely hiding the Ref-
erer header of extension-related requests. Similarly, browser
developers could investigate architectures that allow exten-
sions to create toolbars in a way that does not clutter the
browser’s UI, but also keeps these toolbars outside of a
page’s DOM.

Combating intentional leakage
Assuming that an intrusive extension is not willing to col-
laborate to reduce privacy diffusion and users cannot tell, a
priori, whether an extension is intrusive or not, one could
reduce the value of the extracted data by making it less ac-
curate. By “poisoning” the collected truth about a user, the
value of the collected data is reduced and could therefore
force the extension developers to monetize their software in
different ways. In our case, one can poison the collected
truth by automatically visiting websites that are unrelated
to a user’s true interests so that a history-stealing third party
cannot differentiate real from simulated interests.

To that extent, we developed BrowsingFog, a Chrome
extension which deceives third-party trackers with decoy his-
tory of opened tabs and websites. BrowsingFog follows the
principles set by other protection-through-deception tools,
such as, TrackMeNot [4] (for decoy search queries) or Ad-
Nauseam [1] (for decoy clicks on advertisements). Brows-
ingFog generates visits to 15 categories of websites accord-
ing to Alexa, attempting to hide the real interests of a user in
a“fog”of irrelevant pages. BrowsingFog, in its default set-
ting, opens a new tab every minute, amounting to four page
visits per Alexa category during one hour. Naturally, these
settings can be adjusted by a user to approximately match
the amount of traffic that the user organically produces per
hour. Since a tracking extension may capture repeated vis-
its to the same websites, BrowsingFog continuously visits
a randomly chosen website for each Alexa category while
skipping categories that the user actually visits on a daily
basis (e.g., email, social and, sports news).

Our extension opens a “pinned” tab which allows it to
reduce its footprint in the browser’s UI and allow users to
continue browsing as per usual. Our performance evaluation
shows that, on average, BrowsingFog requires 50 Mb of
RAM to keep the background page, and one Chrome tab
with random websites uses approximately 100 Mb at any
given point in time.

Currently, BrowsingFog is a prototype and only protects
from the leakage of browsing history. One could, however,
straightforwardly add more features to BrowsingFog, such
as, fuzzing of social network pages, search queries, and the
usage of specific and evolving browsing profiles, e.g., simu-
lating a price-sensitive user versus one interested in luxury
goods. To test the concept of BrowsingFog, we resolved a
domain associated with an intentionally-leaking extension to
our server, and installed that extension in a browser running
BrowsingFog. The video recording of BrowsingFog’s
functionality is available on the following link (password:
WWW2017): https://vimeo.com/188468225

5. RELATED WORK
Our motivation for this work came from three blog posts

of researchers who brought attention to the problem of un-
wanted tracking via browser extensions and manually ana-
lyzed a handful of browser extensions [5,6,30]. Interestingly,
privacy concerns about the capabilities of browser extensions
can be traced back to the year 2000, when Internet Explorer
started supporting toolbars and Active-X objects [21].

Even though a manual, in-depth analysis is crucial for un-
derstanding the issue, any manual analysis cannot scale to
the size and dynamic nature of modern browser-extension
markets. To the best of our knowledge, this study is the
first study that uses a dynamic-analysis system that can,
without human supervision, analyze thousands of extensions
and deterministically detect ones leaking private user data.
Moreover, because our system searches for the leakage of pri-
vate information in outgoing traffic, we were able to discover
that accidental, Referer-header-related leakage happens sig-
nificantly more often than the type of shady intentional leak-
age described in the aforementioned blog posts.

While our work is the first one that investigates the leak-
age of sensitive user information through browser extensions,
browser extensions have attracted a lot of prior work, pri-
marily from a security perspective. In terms of malicious
extensions, prior research has proposed systems that can au-
tomatically analyze browser extensions and flag those that
perform malicious actions, such as, stealing a user’s creden-
tials [9, 17, 18] and performing advertisement fraud [29, 31].
In addition to malicious extensions, researchers have also
investigated the security architecture and vulnerabilities of
browser extensions [13] and proposed countermeasures to re-
duce the impact of vulnerable browser extensions in a user’s
browser [10,11].

On the privacy front, recent years have attracted a sig-
nificant amount of research in the privacy practices of web-
sites and the techniques that intrusive websites can utilize
to track users with and without stateful identifiers [7,12,14,
15, 19, 20, 26–28]. Understanding the overlap between tra-
ditional web-page-originating tracking and tracking enabled
by browser extensions, is crucial for enabling researchers to
develop countermeasures that can withstand both.

https://vimeo.com/188468225

6. CONCLUSION
In this paper, we investigated the privacy diffusion en-

abled by browser extensions. By designing and implement-
ing a framework that can automatically install an extension
and simulate user browsing while observing the network, we
identified that 6.3% of popular Google Chrome extensions
leak privacy-sensitive information to at least one third party.
Contrary to the findings of previous work, we observed that
most leakage occurs in an accidental fashion where the ex-
tension developers do not explicitly desire to leak a user’s
sensitive information. Even for intentional leakage, we ex-
plain why it is not always straightforward to gauge the ma-
liciousness of a leaking extension and proposed Browsing-
Fog, a browser extension that hides a user’s true interests
in a fog of irrelevant browsing.

Acknowledgments: We thank the reviewers for their valu-
able feedback. This work was supported by the National
Science Foundation (NSF) under grants CNS-1617593 and
CNS-1527086, as well as the Data Transparency Lab.

7. REFERENCES
[1] AdNauseam. http://adnauseam.io/.

[2] ChromeDriver - WebDriver for Chrome. https://
sites.google.com/a/chromium.org/chromedriver/.

[3] mitmproxy. https://mitmproxy.org/.

[4] TrackMeNot. https://cs.nyu.edu/trackmenot/.

[5] Detectify labs. Chrome Extensions - AKA Total
Absence of Privacy.
https://labs.detectify.com/2015/11/19/

chrome-extensions-aka-total-absence-of-privacy/,
2015.

[6] How-To Geek. Warning: Your Browser Extensions Are
Spying On You. http://www.howtogeek.com/180175/
warning-your-browser-extensions-are-spying-on-you/,
2015.

[7] G. Acar, C. Eubank, S. Englehardt, M. Juarez,
A. Narayanan, and C. Diaz. The Web Never Forgets:
Persistent Tracking Mechanisms in the Wild. In
Proceedings of the 21st ACM Conference on Computer
and Communications Security (CCS), 2014.

[8] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz,
S. Gürses, F. Piessens, and B. Preneel. FPDetective:
Dusting the Web for fingerprinters. In Proceedings of
the 20th ACM Conference on Computer and
Communications Security (CCS), 2013.

[9] S. V. Acker, N. Nikiforakis, L. Desmet, F. Piessens,
and W. Joosen. Monkey-in-the-browser: Malware and
vulnerabilities in augmented browsing script markets.
In Proceedings of the 9th ACM Symposium on
Information, Computer and Communications Security
(ASIACCS), 2014.

[10] S. Bandhakavi, S. T. King, P. Madhusudan, and
M. Winslett. Vex: Vetting browser extensions for
security vulnerabilities. In USENIX Security
Symposium, volume 10, pages 339–354, 2010.

[11] A. Barth, A. P. Felt, P. Saxena, and A. Boodman.
Protecting browsers from extension vulnerabilities. In
Annual Network and Distributed System Security
Symposium, NDSS, 2010.

[12] K. Boda, A. M. Földes, G. G. Gulyás, and S. Imre.
User tracking on the web via cross-browser

fingerprinting. In Proceedings of the Nordic Conference
on Information Security Technology for Applications
(NordSec), 2012.

[13] A. S. Buyukkayhan, K. Onarlioglu, W. Robertson,
and E. Kirda. Crossfire: An analysis of firefox
extension-reuse vulnerabilities. In 23rd Annual
Network and Distributed System Security Symposium,
NDSS, 2016.

[14] P. Eckersley. How Unique Is Your Browser? In
Proceedings of the 10th Privacy Enhancing
Technologies Symposium (PETS), pages 1–18, 2010.

[15] S. Englehardt and A. Narayanan. Online tracking: A
1-million-site measurement and analysis. In
Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS, 2016.

[16] Fairshare: User-friendly, cross-browser monetization
solutions for extensions, websites, games and more.
https://www.fairsharelabs.com/.

[17] N. Jagpal, E. Dingle, J.-P. Gravel, P. Mavrommatis,
N. Provos, M. A. Rajab, and K. Thomas. Trends and
lessons from three years fighting malicious extensions.
In 24th USENIX Security Symposium, 2015.

[18] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel,
G. Vigna, and V. Paxson. Hulk: Eliciting malicious
behavior in browser extensions. In 23rd USENIX
Security Symposium (USENIX Security 14), pages
641–654, San Diego, CA, Aug. 2014. USENIX
Association.

[19] B. Krishnamurthy and C. Wills. Privacy diffusion on
the web: a longitudinal perspective. In Proceedings of
the 18th international conference on World wide web,
pages 541–550. ACM, 2009.

[20] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner.
Internet Jones and the Raiders of the Lost Trackers:
An Archaeological Study of Web Tracking from 1996
to 2016. In Proceedings of the USENIX Security
Symposium, 2016.

[21] D. M. Martin Jr, R. M. Smith, M. Brittain, I. Fetch,
and H. Wu. The privacy practices of web browser
extensions. Communications of the ACM, 44(2):45–50,
2001.

[22] L. Mathews. Shady developers are buying Chrome
extensions and turning them into malware.
http://www.geek.com/apps/shady-developers-

are-buying-chrome-extensions-and-turning-them-

into-malware-1582416/.

[23] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel,
F. Piessens, and G. Vigna. Cookieless monster:
Exploring the ecosystem of web-based device
fingerprinting. In Proceedings of the 2013 IEEE
Symposium on Security and Privacy, SP ’13, pages
541–555, Washington, DC, USA, 2013. IEEE
Computer Society.

[24] A. Razaghpanah, N. Vallina-Rodriguez,
S. Sundaresan, C. Kreibich, P. Gill, M. Allman, and
V. Paxson. Haystack: in situ mobile traffic analysis in
user space. arXiv preprint arXiv:1510.01419, 2015.

[25] J. Ren, A. Rao, M. Lindorfer, A. Legout, and
D. Choffnes. Recon: Revealing and controlling pii
leaks in mobile network traffic. In Proceedings of the
14th Annual International Conference on Mobile

http://adnauseam.io/
https://sites.google.com/a/chromium.org/chromedriver/
https://sites.google.com/a/chromium.org/chromedriver/
https://mitmproxy.org/
https://cs.nyu.edu/trackmenot/
https://labs.detectify.com/2015/11/19/chrome-extensions-aka-total-absence-of-privacy/
https://labs.detectify.com/2015/11/19/chrome-extensions-aka-total-absence-of-privacy/
http://www.howtogeek.com/180175/warning-your-browser-extensions-are-spying-on-you/
http://www.howtogeek.com/180175/warning-your-browser-extensions-are-spying-on-you/
https://www.fairsharelabs.com/
http://www.geek.com/apps/shady-developers-are-buying-chrome-extensions-and-turning-them-into-malware-1582416/
http://www.geek.com/apps/shady-developers-are-buying-chrome-extensions-and-turning-them-into-malware-1582416/
http://www.geek.com/apps/shady-developers-are-buying-chrome-extensions-and-turning-them-into-malware-1582416/

Systems, Applications, and Services (New York, NY,
USA, 2016), MobiSys, volume 16, 2016.

[26] F. Roesner, T. Kohno, and D. Wetherall. Detecting
and defending against third-party tracking on the web.
In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, pages
12–12. USENIX Association, 2012.

[27] A. Soltani, S. Canty, Q. Mayo, L. Thomas, and C. J.
Hoofnagle. Flash cookies and privacy. In AAAI spring
symposium: intelligent information privacy
management, volume 2010, pages 158–163, 2010.

[28] O. Starov, P. Gill, and N. Nikiforakis. Are You Sure
You Want to Contact Us? Quantifying the Leakage of
PII via Website Contact Forms. In Proceedings of the
16th Privacy Enhancing Technologies Symposium
(PETS), 2016.

[29] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal,
A. Kapravelos, D. McCoy, A. Nappa, V. Paxson,
P. Pearce, et al. Ad injection at scale: Assessing
deceptive advertisement modifications. In IEEE
Symposium on Security and Privacy (SP), 2015.

[30] M. Weissbacher. These Chrome extensions spy on 8
million users.
http://mweissbacher.com/blog/2016/03/31/

these-chrome-extensions-spy-on-8-million-users/,
2016.

[31] X. Xing, W. Meng, B. Lee, U. Weinsberg, A. Sheth,
R. Perdisci, and W. Lee. Understanding malvertising
through ad-injecting browser extensions. In
Proceedings of the 24th International Conference on

World Wide Web, WWW ’15, pages 1286–1295, 2015.

http://mweissbacher.com/blog/2016/03/31/these-chrome-extensions-spy-on-8-million-users/
http://mweissbacher.com/blog/2016/03/31/these-chrome-extensions-spy-on-8-million-users/

	Introduction
	Data Collection and Analysis
	Types of private information
	Defining privacy leakage
	Traffic analysis

	Analysis of Results
	Detected leakage
	Leakage over time

	Discussion
	Related Work
	Conclusion
	References

