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ABSTRACT
In this paper, we investigate to what extent the page modifications

thatmake browser extensions fingerprintable are necessary for their

operation. We characterize page modifications that are completely

unnecessary for the extension’s functionality as extension bloat.
By analyzing 58,034 extensions from the Google Chrome store,

we discovered that 5.7% of them were unnecessarily identifiable

because of extension bloat. To protect users against unnecessary

extension fingerprinting due to bloat, we describe the design and

implementation of an in-browser mechanism that provides coarse-

grained access control for extensions on all websites. The proposed

mechanism and its built-in policies, does not only protect users

from fingerprinting, but also offers additional protection against

malicious extensions exfiltrating user data from sensitive websites.
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1 INTRODUCTION
The past two decades have witnessed the web expanding and evolv-

ing at a tremendous rate with a similar expansion of the devices that

users utilize to browse the web. However, this booming diversity

of devices brought with it a new tracking technique called browser

fingerprinting [8, 10–13, 16, 17]. Browser extensions are a recent

addition to the fingerprinting domain [14, 18, 20, 23]. In order to

provide added functionality, many extensions require full access to

the pages that users visit. Some extensions modify existing elements

from the Document Object Model (DOM) of webpages while others

create new ones. Interacting with the DOM has the unfortunate

consequence of causing side-effects which can later be detected

and attributed back to installed extensions. In previous work, we

showed that the presence of many browser extensions can be in-

ferred just by looking at the modifications that they perform to the

DOM [23]. Any malicious script running on the same webpage can

then try to fingerprint the list of extensions installed in the browser.

This poses a serious privacy risk as extension fingerprintability can

lead to the identification of a user.
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Fixing the problem of fingerprintable browser extensions is not

straightforward. Browser extensions are intended to access and

modify webpages that users are visiting and, in many cases, this is

their main and desired functionality (e.g., hiding ads, highlighting

search results, or enlarging photo thumbnails). At the same time,

the question remains whether such functional side effects need to

manifest on all pages unconditionally. For example, if a webpage

does not contain ads, search results, photos, or other triggering

content, it is completely unnecessary for an extension to disclose

its presence since it will be hurting the privacy of the user while

delivering no useful functionality.

In this paper, we investigate whether the page modifications that

make extensions fingerprintable are necessary for their operation.

We define the notion of bloat in the implementation logic of browser

extensions as the unnecessary side effects that offer no functionality

to users and can be abused for extension identification. By analyzing

58,034 extensions from the Google Chrome store, we identify the

behaviors characteristic of bloat and quantify its prevalence in the

wild. We study the origin of fingerprintable bloat and discover cases

of shared libraries and common coding practices, which contribute

to it. Moreover, we show that bloat is responsible for a large fraction

of all fingerprintable on-page changes from extensions.

Orthogonally to our measurement and characterization of exten-

sion bloat, we argue that it is important for users to have client-side

control over the reach of browser extensions and their interactions

with the DOM of webpages. We provide the design and imple-

mentation details of a client-side access control mechanism that

mitigates the aforementioned privacy risks that derive from bloat

by empowering users to selectively enable/disable extensions on

arbitrary websites. Moreover, we discuss how the same client-side

access-control mechanism protects against general privacy risks of

untrustworthy browser extensions, i.e., limiting or altogether stop-

ping the leakage of browsing history and other sensitive on-page

information by buggy and malicious extensions.

2 BLOAT-RELATED FINGERPRINTABILITY
OF BROWSER EXTENSIONS

Software bloat refers to software including unnecessary code and

libraries while the process of debloating denotes the removal of the

excess components. For this paper, we focus on software bloat in

terms of unnecessary implementation logic inside browser exten-

sions, which results in them being unnecessarily fingerprintable.

We use the following definition:

Definition. Bloat-related side effects of browser extensions are arti-
facts on a web page which do not deliver functionality that is desired
by users, yet reveal the extension’s presence to trackers and finger-
printing scripts.
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2.1 Types of bloat
When the user visits a page with an installed extension, both the

extension and the page have access to the same Document Object

Model (DOM), which provides a programmatic interface of the

page to JavaScript code. The extension can add or remove elements

from the DOM of the visited page by injecting JavaScript. The core

observation of our definition with regard to extension bloat, is that

an extension should not modify the DOM of the visited page, unless

it is absolutely necessary for its functionality. Unnecessary DOM

modifications by the extension disclose its presence to visited pages

and therefore to trackers situated on those pages.

Some extensions will perform changes on the visited page that

are part of their intended functionality. For example, static panels

filled with information (e.g., showing website statistics), toolbars

with URL-independent tools (e.g., CSS inspectors), andmodified text

(e.g., extensions to correct the spelling of words) are all intentional.

One may notice that the common feature of all of these examples

is the presence of useful functionality, even if that functionality

manifests on all pages.

To identify cases of true extension bloat, i.e., modifications that

are unnecessary since they do not provide any useful function, we

manually analyzed the types of changes that extensions perform on

an empty page and their purpose. Our intuition was that an empty

webpage has no existing content to trigger the logic of browser ex-

tensions. As such, any DOMmodifications are potentially the result

of bloat and should be investigated. Through this manual experi-

ment we identify the following extension-independent categories

of unnecessary DOM modifications:

•Injected empty placeholders. We discovered that it is a com-

mon practice among many extensions to include empty or invisible

DOM elements first, which will be filled with data later based on a

trigger (e.g., when specific content appears on a page, or when a

user clicks the extension’s icon) (Figure 1). The direct consequence

of this preemptive DOM modification is that these placeholders un-

necessarily increase the fingerprintability of extensions especially

in the cases where the extension remains otherwise inactive.

•Injected script tags. Some extensions add script tags to the page’s

DOM, which are visible to any other script executing on the page.

However, extensions have the ability to add and hide script tags,

before any original code is executed on the page, by properly regis-

tering content scripts (i.e. scripts running together with webpages

with access to a shared DOM).

•Injected style tags. Many extensions inject CSS tags into the

page’s DOM, which are visible to any script on the page. This behav-

ior is unnecessary because there exist special APIs for extensions

to inject CSS stylesheets in a page (e.g. chrome.tabs.insertCSS).
When an extension uses this API, the added styles are not visible

via standard CSS-querying APIs, such as, document.styleSheets.
Using these methods, the injection does not modify the DOM tree.

•Attributes for body/head/html tags. Bloat also occurs when

an extension sets attributes to parent DOM nodes, such as the body,
head or html tag. We discovered many cases of custom attributes

with words “installed” or “injected”, which do nothing except dis-

close the extension’s presence. Even if these attributes are used

in CSS selectors, given that they target well-defined tags, they are

unnecessary and can be removed from the corresponding CSS rules.

// Unnecessary and invisible placeholders
<div class="plugin -body" style="display:none;">
</div >
<div id="addManualImageDiv" style="display: none;">
</div >
<div id="mystickies"></div >
// Unnecessary top -level attributes
<html style="visibility: visible;">
<body screen_capture_injected ="true">
<body style="">

Figure 1: Examples of bloat-related DOMmodifications of browser ex-
tensions.

Similarly to empty placeholders, attributes with empty values are

signs of bloat in the extension’s logic. The bottom half of Figure 1

illustrates several real examples of such behavior.

•Window messages. The browser provides a programmatic way

for different JavaScript execution contexts to communicate via

messages. Extensions can send a message to the visited page using

window.postMessage, but that message can be received by any

script running on the page that has registered the appropriate

callback function. Since these messages reveal the presence of the

extension to the visited page, we consider the presence of such

messages on an empty webpage as extension bloat.

2.2 Quantification of extension bloat
To measure the fingerprintability due to browser-extension bloat,

we collected 58,034 extensions from the Chrome Store in October

2017. These include 25,779 extensions with permissions to modify

web pages on any URL. We evaluated each extension according

to the necessary condition of our bloat definition. Namely, we re-

trieved all the fingerprintable DOMmodifications that an extension

introduces on any domain and filtered out ubiquitous side effects

which were part of an extension’s desirable functionality.

In order to automate the testing of extensions, we modified and

used the source code of XHound [23]. Given the more narrow def-

inition of the bloat-related DOM modifications (compared to all
modifications that XHound can uncover), we simplified XHound

by taking each extension to a custom domain only once, simulat-

ing the visiting of an arbitrary website. Moreover, we served an

empty HTML page to extensions in order to eliminate the possibil-

ity of any specific content triggers, and we disabled the usage of

the XHound’s OnTheFlyDOM library as we are not interested in

DOM modifications in response to specific content or user actions.

As such, we collected only those fingerprintable side-effects that

occur on an arbitrary webpage without any triggering content and

without user actions. To further minimize the probability of false

positives, we filtered out any cases of discovered “bloat” which do

not conform to our definition, therefore calculating a lower bound

of bloat-related fingerprintability.

Overall, we discovered 3,320 extensions, or 5.7% of all the exten-

sions in Chrome’s webstore, which have at least one fingerprintable

side effect because of bloat. Out of those, 2,189 inject unnecessary

nodes into the DOM (e.g., div, span, script, style), and 1,526 set

unnecessary attributes to the body, head or HTML nodes. More-

over, 65% out of 3,320 extensions had all their changes categorized
as bloat. In other words, these 2,145 extensions should have been

completely invisible on our test pages. Figure 2 shows that both

popular and less popular extensions are affected by this type of
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Figure 2: Percentage of fingerprintable extensions, and extensions
with fingerprintable bloat, shown by extension popularity. High-
ranked extensions tend to be more fingerprintable, and bloat-related
side effects contribute to a stable large fraction of fingerprints.

bloat with more than 9% of the top 5K extensions containing bloat,

and approximately 4% of the less popular extensions.

Apart from bloat-related DOMmodifications, we discovered that

213 extensions reveal their presence by posting disclosing messages

to web pages upon installation. We were surprised to find such a

large number of extensions since Chrome APIs provide the ability to

set up communication channels with only selected web pages with

the externally_connectable permission. Moreover, we discov-

ered 637 extensions listening to messages from any web page. This

means that a tracker can potentially craft and send expected mes-

sages and wait for visible side effects from extensions in response.

For example, as shown on Figure 3, Crypto-Plugin, a banking exten-

sion with 304,730 active users, responds to a specially-crafted mes-

sage if there is an input element with id CryptoPluginInstance
and a value containing a JSON-formatted command. Note that this

behavior of taking arbitrary content and treating it as command

can, in addition to make extensions unnecessarily identifiable, lead

to severe security issues.

2.3 Impact on extension fingerprintability
In this section, we compare our results to the unmodified XHound

prototype, which deploys additional techniques for triggering the

functionality of browser extensions and can thus discover more

fingerprintable side-effects. We find that a large fraction of finger-

printable extensions are actually fingerprintable due to bloat and

could thus become invisible to trackers, if their bloat-related DOM

modifications are removed.

Overall, using XHound, we could identify 5,323 fingerprintable

extensions. Given our earlier finding of 3,320 extensions introducing

bloat-related fingerprintable side effects, approximately 62% of all

the fingerprintable extensions have at least one bloat-related side

effect, which adds to their fingerprint. Moreover, even when using

XHound’s on-the-fly triggering content, 1,073 extensions remain

with bloat only, suggesting that this bloat can be safely removed to

make extensions invisible from prying webpages.

The bloat-related side effects of 3,320 Chrome extensions re-

sulted in 2,032 extensions sharing their bloat-related fingerprint

with no other extension (i.e. their bloat-related DOM modifications

are unique to them and could be used to uniquely identify them). In

terms of anonymity set sizes: 61.2% had totally distinct fingerprints,

8.8% shared their fingerprint with up to 10 other extensions, 7.2%

window.addEventListener("message", function(event) {
if (event.data.sender == "crypto.plugin.native") {

console.log(JSON.stringify(event.data));
}

}, false);

var dummy_input = document.createElement("input");
dummy_input.setAttribute("value", "{}");
dummy_input.id = "CryptoPluginInstance";
document.body.append(dummy_input);

window.postMessage ({ sender: "crypto.plugin.js"}, "*")

// CONSOLE OUTPUT:
{"answer":{"errorCode":1,"errorText":"Wrong function"},
"type":"error", "sender":"crypto.plugin.native"}

Figure 3: Detecting the Crypto-Plugin extension by sending an
appropriately-craftedmessage, simulating a triggering DOM content,
and listening to the response.

shared with up to 100 extensions, while 22.8% shared their finger-

print with more than 100 extensions because of similar bloating

changes related to jQuery (we discuss this in the next section). As

a result, unnecessary bloat-related fingerprintability is, in and of

itself, a clearly dangerous extension-fingerprinting vector.

2.4 Origin of bloat in browser extensions
According to our manual analysis of extension bloat (Section 2.1),

poorly-designed internal logic is the most common reason for ex-

tension bloat. First, we discovered 1,070 extensions with the design

flaw of adding placeholders before filling them with useful content.

Second, we witnessed several cases of implementation bugs when

a DOM modification appears because of poor coding practices. For

example, the code in Figure 4 adds an empty class attribute to the

body node even if eod_disabled was not set initially.
Next to extensions having their custom logic leading to unique

cases of bloat, we discovered several libraries that perform unnec-

essary modifications in the DOM. For example, the jQuery library,

when included as a content script, injects an empty style to the body

of web pages (discovered on more than 980 extensions). Moreover,

particular versions of jQuery have other hardcoded side effects like

an injected div tag with id pg_hgfkj4kj32mda (version 1.7.2), or the
added style zoom: 1; to the body of web pages (version 1.9.0). We

also discovered the FancyBox JavaScript library on 65 extensions,

which adds custom styles to web pages. Additionally, the Cross-

riderAPI, a cloud-based extension development tool, adds its own

attribute to a page’s body, namely crossrider_data_store_temp,
on at least 45 extensions. In addition to the aforementioned cases

of bloat, we discovered other cases of the same bloat modifications

manifesting across tens of extensions but we could not attribute

them to a particular library. These types of modifications could be

due to reused code across related extensions or extensions devel-

oped by the same developers.

In summary, we discovered that a large number of browser exten-

sions introduce fingerprintable modifications that could have been

avoided and which are not necessary for the proper operation of the

extension. On the one hand, this is a positive development since this

finding suggests that the more careful design and implementation

of browser extensions would allow users to be less fingerprintable,

without the need to avoid using these extensions. On the other hand,

solely relying on extension developers to voluntarily make their



document.documentElement.className =
document.documentElement.className.replace(

/eod_disabled/g, "")

Figure 4: An example of implementation bug in browser extension,
which results in unnecessarily fingerprintable DOM modification
extensions more robust against browser fingerprinting, is likely not

going to lead to drastic improvements with regard to user privacy.

As such, we argue that there is a need to protect users, even when

extension authors are not committed to change the logic of their

extensions. We discuss such a solution in Section 3.

By comparing the set of fingerprintable/undetectable extensions

throughout the years, we discovered that most extensions retain

their original status. That is, if the first version of an analyzed ex-

tension was fingerprintable, the extension remains fingerprintable

through subsequent updates. Overall, only 258 extensions from the

initial 1,000 fingerprintable set were not fingerprintable in their

first version. Similarly, most extensions that were originally un-

detectable, remain undetectable. This finding suggests that the

fingerprintable bloat of extensions remains stable over time and

thus requires an explicit attempt to remove it (i.e. will not disappear

in future versions of extensions).

In the following, we present a few case studies of extensions

which migrated from undetectable to fingerprintable and vice-

versa. One example of an extension which became fingerprintable

is Extended JS Console. It was undetectable for two years until

the developer used the Crossrider framework to make develop-

ment across different browsers easier. This framework injects a

crossrider_data_store_temp attribute to the list of body tags

that makes the framework easily detectable. Another example is the

Dayboard extension which, after 18 undetectable versions, started

to inject a db-visibility-check empty div on all visited page.

Fortunately, there are also 72 extensions which were once finger-

printable but later became undetectable, e.g., the Web PKI, which,

since February 2018, has stopped injecting empty div placeholders.

3 COUNTERMEASURES
Since extension authors cannot be trusted to appropriately limit

the access of their own extensions (either due to the inability to

specify a finite whitelist that works for all users, a lack of motive,

or outright maliciousness), the limiting of those extensions must

happen at the client-side.

This means that, in addition to extension authors specifying

on which websites a given extension should run, there should be

a second layer of access-control which empowers users to limit

the access of extensions according to their needs. For example,

users may want to disable ad-blockers on specific websites which

they want to support with ad-revenue, even if the ad-blockers do

not support per-website whitelisting. Similarly, users may want

to disable all extensions on their banking website, to limit their

exposure, in case of accidental information leakage [22] ormalicious

data exfiltration [7, 9, 15].

Instead of relying on users to whitelist/blacklist each of their

installed extensions on every domain that they visit, we argue that

we can build higher-level access-control primitives which can be

intuitively utilized by users with limited technical expertise. Specif-

ically, we propose primitives that take the form of the following

access-control modes:

{ "ExtensionSettings":{
#UBlock Origin
"cjpalhdlnbpafiamejdnhcphjbkeiagm":{

"runtime_blocked_hosts":[
"*://*. bankofamerica.com"

]
},
#Dark Mode
"dmghijelimhndkbmpgbldicpogfkceaj":{

"runtime_blocked_hosts":[
"*://*. google.com",
"*://*. bankofamerica.com"

]
}}}

Figure 5: Example of an ExtensionSettings policy for two separate ex-
tensions.
•Blocking extensions by default. The goal of this mode is to

stop “drive-by fingerprinting”, i.e., the complete fingerprinting of a

user’s extensions just because a user visited an untrusted website.

•Automatic disabling of extensions on sensitive domains.We

argue that there is often no need for extensions to be able to run

in any and all websites that the users visit. As such, given a list of

sensitive URLs (such as banking websites, social networks, dating

websites, and healthcare-related websites), the browser can auto-

matically disable all extensions on these domains and allow users

to re-enable only the ones that they absolutely need.

•Content-based automated blocking. Next to maintaining lists

of sensitive websites, we argue that a user’s exposure can be further

reduced if a browser disables extensions when a webpage allows

users to input content. For example, disabling extensions on login

pages could help reduce the likelihood of an extension exfiltrating

user credentials.

Given the HTTPS issues of client-side proxies and the lack of APIs

that a browser extension can use to block other browser extensions,

a client-side access control mechanism for browser extensions has
to include some level of browser modifications. By inspecting the

source code of Chromium (our browser of choice given the avail-

ability of its source code and its market share) and discussing with

developers of Chromium, we discovered the presence of an Enter-
prise mechanism built in the browser. Enterprise mechanisms are

typically utilized in corporate environments where system admin-

istrators wish to limit the features that are available to individual

deployments of powerful software, such as, a web browser. Even

though these features are completely invisible to regular users, we

discovered that the Enterprise features of Chromium were intro-

duced in 2012 and are still part of the code base of the regular

browser that users download.

Chromium’s enterprise mechanisms are driven by an enterprise

policy written in a platform-dependent format (e.g. JSON on Linux)

which allows administrators to manage the browser’s configuration

and behavior. These policies cover a wide range of browser settings,

from power management and proxy configurations, to printers,

startup pages, and the default search engine. For our purposes, the

ExtensionSetting policy allows administrators to disable specific

extensions, and stop users from installing any extension that re-

quests specific permissions [2]. The following two directives that

control which websites can be accessed by extensions, are of par-

ticular interest for our client-side access control mechanism:

•runtime_blocked_hosts: List of strings representing hosts whose
webpages the extension will be blocked from modifying.
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Figure 6: Implementation overview of the client-side access control
mechanism for browser extensions.

•runtime_allowed_hosts: List of strings representing hosts that
an extension can interact with, regardless of whether they are listed

in runtime_blocked_hosts.

Figure 5 shows an example of an ExtensionSettings policy. The first
ID refers to the ad blocker “uBlock Origin” and the second to the

“Dark Mode” extension (an extension that changes the background

color of a website and which we will use in a later demonstration).

This policy instructs the browser to block both extensions from

accessing any webpages from Bank of America but only the ad

blocker is allowed to operate on google.com.
The files containing the Enterprise policies, are expected to be

present in predefined filesystem paths, according to the operating

system of the user. If such a file is discovered during the startup of

the browser, it is loaded and enforced by Chromium.

By retrofitting the already available enterprise mechanism and

exposing it to regular users through a dedicated UI that converts

user choices to JSON policies, we can enable client-side access con-

trol of extensions with minimal changes to the browser’s code. In

addition to modifying as little as possible of the browser’s existing

code (therefore increasing our chances of adoption), we also rely

on a proven mechanism that provides comprehensive extension

blocking in a way that is not possible by combining blocking direc-

tives available to extension authors (such as the exclude_matches
directive which allows extension authors to opt-out of running on

specific domains and URLs).

The source code of our modified Chromium browser along with

a fully compiled version can be found on GitHub:

https://github.com/plaperdr/extension-access-control.

3.1 Interfacing with the user
Since Enterprise policies are fully controlled by JSON-formatted

files available in obscure file paths, we cannot reasonably expect

users to directly interact with them. To bridge the Enterprise policy

mechanism with the interfaces that users are already familiar with,

we developed a browser extension that creates policies based on user

choices. Next to allowing users to individually disable extensions

on websites through our extension’s UI, we provide support for the

following three blocking strategies, whichmap to the access-control

primitives described in Section 3:

•Flexible mode (default mode): All extensions are allowed on

all webpages and the user can disable (or re-enable) at any time

an extension on a specific website. Note that this mode does not

interfere with the selective exclusion that extension authors may

request using the exclude_matches directive in their manifest files.

As such, extensions that were previously active only on selected

URLs (e.g. a video-downloading extension being active only on

youtube.com) remain active only on the same URLs.

•Sensitive mode: This mode is similar to the Flexible mode but
comes preloaded with a list of sensitive websites where all exten-

sions are automatically blocked. For our proof-of-concept imple-

mentation, this list consists of 50 popular banking websites. This

mode also supports content-based blockingwhere extensions can be

disabled if our mechanism detects the presence of sensitive content

on a website that is not part of our predefined lists. Specifically, our

current implementation blocks extensions whenever a password

input field is detected in a webpage’s HTML code.

•Strict mode: In this mode, all extensions are by default blocked

on all websites. Users can selectively enable extensions wherever

they require them.

Given a desired policy of blocking and enabling browser ex-

tensions on specific websites, this policy needs to be communi-

cated to the enterprise policy-parsing mechanisms of the browser.

Chromium has a relatively complex policy-loading system that

spans dozens of files and thousands of lines of code. Figure 6 pro-

vides an overview of our modifications. First, our user-facing exten-

sion transforms all user choices and all rules derived from content-

based blocking into an ExtensionSettings policy readable by the

browser, indicating for each installed extension which hosts are

blocked and which are allowed. This policy is then stored in a

database that is available to our extension.

As mentioned earlier, the Enterprise mechanism expects poli-

cies to be available on different filesystem paths depending on the

user’s operating system. Specifically, Chrome’s policy loader uses

GPO (Group Policy Object) on Windows, XML files on MacOS, and

JSON files on Linux. All of these locations are encoded as different

“providers” in one combined mechanism called a Policy Service. For
our implementation, we modified the Policy Service and added a

new policy provider which pulls new policies directly from the data-

base of our user-facing extension. Whenever a policy changes (e.g.

because the user whitelisted/blacklisted an extension, or switched

modes), our service triggers a “refresh” which causes Chromium’s

Policy Service to pull a new copy of the policy. The policies from

all policy providers are then combined into a unique policy and

transmitted to Chromium’s Preferences Store that will parse it and
apply it.

3.2 Evaluation
Performance Overhead. To test the overhead of our client-side access
control mechanism, we visited the Alexa Top 50 websites with

the original (i.e. unmodified) version of the Google Chromium

browser (v.71) and our modified copy of the same version of the

same browser. For each visited page, we recorded the time it takes

for the browser to completely render every element. Specifically,

we collected the timestamps corresponding to the following three

events from the window.performance.timing object:

google.com
https://github.com/plaperdr/extension-access-control
youtube.com
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• the DOMLoading event is fired when the parser starts parsing the

received webpage.

• the DOMContentLoaded event marks the point when both the

DOM is ready and there are no stylesheets that are blocking JavaScript

execution.This means that the browser can start combining the

DOM and CSSOM into a render tree.

• the DOMComplete event is fired when the page and all of its

subresources are ready.

We tested three different configurations: unmodified Chromium

with no running extensions, unmodified Chromium with exten-

sions, and our custom Chromium in “Strict” mode with extensions

(i.e. all extensions are present but blocked by our custom policy).

For our tests, we utilized five popular extensions: AdBlock [1],

Google Keep [3], Grammarly [4], Honey [5], and LastPass [6]. The

number of extensions was chosen to match the average number of

extensions that regular users install, according to Starov et al. [23].

We repeated the measurements ten times and averaged the re-

sults, which are shown in Figure 7. The “Content” category corre-

sponds to the time between the DOMLoading event and the DOM-
ContentLoaded one. The “Complete” one is the time between DOM-
Loading and DOMComplete.

For both categories, we observe that the timings of our modified

browser with all extensions disabled by the applied “Strict” pol-

icy closely match the timings of the unmodified browser without

any extensions installed. Given that our mechanism makes use

of existing Chromium code which we retrofit to give users the

ability to make client-side access-control decisions, the obtained

performance results make intuitive sense. Overall, our findings

demonstrate that client-side access control of extensions not only

will not slow down a user’s browser but will, in fact, increase its

performance by disabling extensions when they are not necessary.

Blocking Coverage. To test whether the extensions disabled through
our access-control mechanism are completely disabled, we per-

formed the following experiment. We selected 1,000 extensions

which were introducing bloat-related fingerprintable DOM side

effects and installed them, one by one, on our modified Chromium

browser. We then used that browser together with the XHound

tool [23] and attempted to extract fingerprints from each extension.

For the 985 extensions that we could install in our modified

browser (15 out of the 1K sample would not properly execute

on Chromium version 71), XHound was unable to extract finger-

printable DOM modifications, when these extensions were blocked

through the “Strict” policy of our client-side access control mecha-

nism. Given that XHound searches for any and all DOM modifica-

tions that can be attributed to an extension, this gives us confidence

that our modified browser successfully disabled all extensions.

4 RELATEDWORK
In the last few years, the privacy implications of browsers exten-

sions have received significant attention [9, 14, 18, 19, 21–23, 25]. To

the best of our knowledge, this is the first paper that i) quantifies to

what extent the fingerprintable DOM modifications performed by

extensions are necessary, ii) points out the resulting issue of bloat
in the context of browser extensions, and iii) proposes a client-side

access control mechanism for reducing the footprint of extensions

in a user’s browser which can counter many of the attacks described

in the aforementioned papers. In concurrent work, Sjösten et al.

described the privacy issues of unique extension identifiers and also

proposed a client-side access control system for extensions [19].

While the two systems are conceptually similar, our work utilizes

existing code within the Chromium browser thereby avoiding the

disabling of security checks of browser extensions and the need for

extension rewriting.

On October 1, 2018 and in parallel with our work, Google an-

nounced that future versions of their Chrome browser will allow

users to selectively enable and disable extensions on different web-

sites [24].We find this awelcoming development and a confirmation

of the need of client-side access control for browser extensions. The

current instantiation of that mechanism allows users to whitelist

extensions on a site-by-site basis, or only enable them when the

user interacts with them through the browser’s UI. We argue that

our proposed policies strike a better balance between security and

usability (e.g. extensions enabled everywhere except on sensitive

sites) and we therefore hope that Google, as well as other browser

vendors, will follow our proposed design.

5 CONCLUSION
In this paper, we investigated the fingerprintability of browser ex-

tensions due to bloat, i.e., the unnecessary side-effects caused by

faulty application logic that reveal an extension’s presence without

providing any useful functionality. Bloated extensions represent a

risk to online privacy as they facilitate the fingerprinting of installed

extensions.We analyzed 58,034 extensions from the Google Chrome

store and found that 5.7% of them contained fingerprintable bloat.

For 61% of these extensions, their bloat was unique which can be

abused for their direct identification. Finally, we presented the de-

sign and implementation of a client-side access control mechanism

for Google Chromium which enables users to control the reach

of extensions, either on a one-by-one basis, or via access modes

(e.g. automatically blocking all extensions on sensitive websites).

Overall, our paper highlights the problems associated with bloat for

both users and developers. We hope that this work will motivate the

more careful implementation of extensions by their developers and

the adoption of client-side access control by all modern browsers.
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