
Hindsight: Understanding the Evolution of UI Vulnerabilities in
Mobile Browsers

Meng Luo, Oleksii Starov, Nima Honarmand, Nick Nikiforakis
Stony Brook University

{meluo, ostarov, nhonarmand, nick}@cs.stonybrook.edu

ABSTRACT
Much of recent research on mobile security has focused on mali-
cious applications. Althoughmobile devices have powerful browsers
that are commonly used by users and are vulnerable to at least as
many attacks as their desktop counterparts, mobile web security
has not received the attention that it deserves from the commu-
nity. In particular, there is no longitudinal study that investigates
the evolution of mobile browser vulnerabilities over the diverse
set of browsers that are available out there. In this paper, we un-
dertake the first such study, focusing on UI vulnerabilities among
mobile browsers. We investigate and quantify vulnerabilities to 27
UI-related attacks—compiled from previous work and augmented
with new variations of our own—across 128 browser families and
2,324 individual browser versions spanning a period of more than
5 years. In the process, we collect an extensive dataset of browser
versions, old and new, from multiple sources. We also design and
implement a browser-agnostic testing framework, called Hindsight,
to automatically expose browsers to attacks and evaluate their vul-
nerabilities. We use Hindsight to conduct the tens of thousands
of individual attacks that were needed for this study. We discover
that 98.6% of the tested browsers are vulnerable to at least one of
our attacks and that the average mobile web browser is becoming
less secure with each passing year. Overall, our findings support
the conclusion that mobile web security has been ignored by the
community and must receive more attention.

CCS CONCEPTS
• Security and privacy→ Browser security; Software and ap-
plication security; Mobile platform security; Vulnerability
scanners;

KEYWORDS
Mobile browser security; vulnerability testing; user interface; phish-
ing attacks; Hindsight

1 INTRODUCTION
The recent years have seen a steady increase in sales of mobile
devices as even more users purchase smartphones and tablets to
supplement their computing needs. The smartphones’ cleaner UIs,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’17, October 30-November 3, 2017, Dallas, TX, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4946-8/17/10. . . $15.00
https://doi.org/10.1145/3133956.3133987

in combination with an ever increasing number of apps and con-
stantly decreasing prices, are attracting more and more users who
entrust their devices with sensitive data, such as personal pho-
tographs, work emails, and financial information—making mobile
devices an increasingly popular target for attacks.

Even though the most common form of abuse in smartphones
is that of malicious applications, it is most certainly not the only
possible kind of abuse. One must not forget that smartphones have
powerful browsers and, as such, are susceptible to at least as many
problems as desktop browsers. A user visiting a malicious website
through her mobile browser can be the victim of web application
attacks (e.g., XSS and CSRF), attacks against the browser (e.g., mem-
ory corruption [24] and application logic issues [11]), as well as
attacks against the user herself (e.g., phishing and malvertising).

Especially for phishing and malvertising, prior research has
shown that users of mobile browsers may be more susceptible
to such attacks than users of traditional desktop browsers [2, 3, 15,
27, 30, 32]. The limited screen real-estate of hand-held devices, com-
bined with mobile browsers’ desire to maximize the space allotted
to a webpage means that parts of the browser UI, under certain con-
ditions, disappear. These parts, such as the address bar, are critical
for identifying the true nature of a website and if they are missing,
an attacker can more easily trick users into divulging their personal
and financial information.

A major limitation of the aforementioned research is that the
quantification of which mobile browsers were vulnerable to what
attacks was done once and was done manually. Therefore, the re-
ported findings could only capture the state of vulnerability at the
time when the researchers performed their experiments. The quick
update cycles of modern software, coupled with the fact that the
app stores of modern smartphones house hundreds of different mo-
bile browsers (each advertising a wealth of features, such as tracker
blocking, voice-control, and reduced data consumption) means that
we currently do not know which browsers are vulnerable to what
attacks and how the vulnerability of the mobile browser ecosystem
has evolved over time, i.e., are mobile browsers becoming more or
less vulnerable to specific UI attacks?

Recognizing this gap, in this paper, we collect the attacks against
mobile browsers discussed in prior research and, after expanding
them with novel variations, we distil from them a series of attack
building blocks, i.e., techniques that attackers could use, either
stand-alone or in unison, to perform one or more attacks against
mobile web users.

To test mobile browsers against these building blocks, we design
and implement Hindsight, a dynamic-analysis, browser-agnostic
framework that can automatically expose any given mobile browser
to an attack and assess whether the attack succeeded or failed. Our

https://doi.org/10.1145/3133956.3133987

framework is able to overcome a series of challenges, such as by-
passing the splash screens of browsers, dealing with idiosyncrasies
of different browsers, and, most importantly, extract information
about a browser’s UI in a browser-agnostic fashion without relying
on browser-specific web drivers (e.g., those used by Selenium) and
without the assistance of the browser itself.

In this paper, we focus on Android and its web browsers, due
to the platform’s popularity, the large number of official and third-
party app stores, and its open-source ecosystem which greatly
faciliates the implementation of a framework like Hindsight. By
crawling Android app stores and third-party websites for current
and past versions of mobile web browsers and filtering out dupli-
cates and those browsers that do not conform to our definition
of a modern web browser, we expose 2,324 APKs belonging to
128 distinct browser families to 27 different attack building blocks.
By launching more than 62K individual attacks and automatically
assessing their success or failure, we are able to quantify the vulner-
ability of modern mobile web browsers and how this vulnerability
has evolved since 2011 (the year of our earliest APK files).

Among others, we find that 98.6% of the evaluated browsers
are vulnerable to at least one attack, with the average browser
being vulnerable to twelve. Depending on the specific browser
evaluated, we find that attackers have typically more than one way
of hiding a browser’s address bar, confusing users about the exact
URL on which they are located, and stealing browser cookies due to
the rendering of mixed content. Contrary to our expectations, we
discover that mobile browsers, even some of the most popular ones,
appear to be becoming more vulnerable as years have passed. We
also quantify the attacks that have the widest applicability across
different browser families, finding attacks that are applicable to
more than 96% of all our evaluated browser versions. Our results
are a clear sign that mobile web security has been ignored by the
community and must receive more attention before attackers start
abusing the many vulnerabilities that they have at their disposal.

Overall, our contributions are the following:
• We systematically analyze related work and compile a list of
mobile browser UI vulnerabilities. We expand that list with
novel attack variations and arrive at 27 building blocks that
expose mobile web browsers to different UI attacks.
• We collect thousands of Android mobile browser APK files
from multiple, often non-cooperative, online sources, cover-
ing 128 different browser families with versions from 2011 to
2016. We devise techniques to date each APK so that we can
perform longitudinal measurements across browser families.
• To analyze the large and diverse set of browser families, we
design and develop an automated, pluggable, and browser-
agnostic framework (called Hindsight) for unsupervised in-
stallation and exposure of mobile browsers to a series of UI
attacks, and determination of the tested browsers’ vulnera-
bility to each evaluated attack. We describe the non-trivial
challenges that we had to overcome to build Hindsight.
• Using our framework and attack building blocks, we auto-
matically expose mobile browsers to more than 62K attack
instances. By analyzing the reports generated by our frame-
work, we paint a picture of how the status of mobile UI web
security has changed over a period of 5 years and identify

trends that demonstrate that the evaluated threats have been
largely ignored and need urgent addressing.

2 ATTACK BUILDING BLOCKS
To evaluate the UI security of mobile browsers, we started by per-
forming a thorough investigation of prior work [2, 3, 6, 15, 16, 30, 32,
38], in search for known attacks. In addition to the attacks that we
discovered, we also reasoned about interactions of mobile browsers
with websites and how browsers could attempt to maximize the
screen real-estate for the rendered websites. Through a process of
trial-and-error we were able to identify novel variations of existing
attacks. Table 1 shows the results of this process in the form of
yes/no questions. We name each of these 27 questions an attack
building block (ABB). For any given browser, if the answer to an
ABB is “yes”, then the browser is vulnerable to that building block.
We chose the term “attack building block” to stress the fact that
these vulnerabilities can be used either stand-alone or combined.
In the next paragraphs, we discuss each class of ABBs and provide
a few characteristic examples.

ABBs #1–6: Event Routing. Event routing attacks abuse the non-
intuitive routing of events across overlapping elements typically
belonging to different origins. Clickjacking is a well-known case of
an event routing attack from the desktop browser world. Mobile
browser event routing attacks have the potential to cause more
damage since users interact with small screens and tap (as opposed
to click) which covers wider regions of a page. In 2012, Amrutkar
et al. [2, 3] showed that some mobile browsers did not always
follow the event-routing policy found in desktop browsers where,
in the case of multiple overlapping elements, the topmost element
receives the click/tap events. The authors showed that, at the time,
the Android stock browser, Nokia Mini-Map and Opera Mini would
trigger the event handlers of elements that were underneath opaque
images. This behavior could be used to, among others, facilitate
click-fraud (where expensive ads are hidden underneath images
that trick the user to interact with them) and non-standard login
CSRF attacks. In our study, ABBs #1–6 test event routing across
different combinations of cross-origin elements.

ABBs #7–19: URL & Address Bar. Similar to desktop browsers,
mobile browsers have to display the URL of the current page in
order to convey a website’s true identity to the user. Since attack-
ers can freely register domains, and create arbitrary subdomains
and filepaths, a browser’s address bar is of critical importance for
defending against spoofing attacks.

Unfortunately there exist ways which websites can abuse to
confuse users or hide a mobile browser’s address bar, by triggering
different parts of a browser’s logic for maximizing the screen real-
estate allotted to webpages. ABBs #7–19 cover various ways which
attackers could use to hide their website’s identity.

For example, mobile browsers have to decide how to show long
URLs that do not “fit” in the limited width of the user’s screen.
ABBs #7–9 quantify whether a mobile browser shows the leftmost
part of a long URL which has many subdomains (e.g. www.paypal.
com.attacker.com), the rightmost part of a URL with a long file-
path (e.g. www.attacker.com/foo/bar/www.paypal.com, and ei-
ther the leftmost or the rightmost parts for a URL with both many

www.paypal.com.attacker.com
www.paypal.com.attacker.com
www.attacker.com/foo/bar/www.paypal.com

(a) Google Chrome (b) Mozilla Firefox (c) Dolphin Browser (d) APUS Browser Turbo

Figure 1: Examples of vulnerabilities in the latest (bottom row) and an older (top row) version of four popular mobile browsers. The warning
sign indicates behaviors that can be abused for spoofing attacks: (a) rendering URLs with confusing IDN-based domain, (b) truncating long
URLs with many subdomains, (c) hiding the address bar in case of a long page, (d) showing a page’s title instead of its URL.

subdomains as well as a long file-path. Similarly, mobile browsers
have to decide whether they want to give preference to a website’s
title instead of its URL (e.g., showing “Welcome to Facebook” ver-
sus https://www.facebook.com, ABB #12), whether they should
hide the URL bar when a user starts interacting with a page (e.g.,
through scrolling or switching to landscape mode, ABBs #14–16),
whether they should show a previously hidden address bar upon
sensitive interactions (e.g., text input, ABBs #17–19) and whether
they should display IDN domains in their punycode or internation-
alized format (ABB #10). Figure 1 shows four different browsers
that are vulnerable to four different ABBs in these classes.

ABBs #20–27: Security Indicators&Content.With the increased
focus onHTTPS, and the presence of SSL/TLS errors that developers

and users must be able to recognize, security indicators are as impor-
tant as a browser’s address bar. Specifically, a mobile web browser
needs to be able to communicate to users whether the current web-
site is loaded over HTTPS (as opposed to plain HTTP), whether
there is mixed content that could jeopardize some of the guarantees
of HTTPS, and whether the current certificate is signed by a chain
of trustworthy Certificate Authorities, or it is self-signed. Moreover,
other icons that are unrelated to HTTPS, such as a website’s favicon,
must be displayed on a different location on a browser’s address
bar to avoid attackers using padlock-like favicons in combination
with SSL stripping attacks [28].

Prior work has shown that mobile browsers have been ignor-
ing W3C best practices with regard to indicator placement and
different browser families vary wildly in terms of their signage
for denoting SSL protected websites, mixed content warnings, and

Table 1: List of the 27 attack building blocks (ABBs) used to evaluate security of mobile browsers

Class Test# Explanation Prior Work Potential Attacks

Event
Routing

1–6 Do cross-origin, overlapping elements receive events when they are not the
topmost ones? (Different tests for combinations of overlapped images and
buttons, links, forms, and other images)

[3, 6] Clickjacking, CSRF

URL 7–9 When presented with a long URL (long subdomain, long filepath, or a combi-
nation of both), does a browser render that URL in a way that could be abused
for spoofing attacks?

[30, 38] Phishing, malware/scam delivery

10 When presentedwith an Internationalized Domain Name (IDN), will a browser
display the IDN format?

[16] Phishing, malware/scam delivery

Address
Bar

11 Is the address bar hidden if the top-level frame is navigated by a child frame? [3, 6] Phishing, malware/scam delivery
12 Does a browser show a page’s title instead of its URL? [8] Phishing, malware/scam delivery
13 Is the address bar hidden if the visited website has a lot of content? Novel Phishing, malware/scam delivery
14 Is the address bar hidden when switching the device to “landscape" mode? Novel Phishing, malware/scam delivery
15–16 Is the address bar hidden upon manual/automatic page scrolling? [30, 32] Phishing, malware/scam delivery
17–18 Is the address bar hidden when typing in a textbox and tapping on a button? [15, 38] Phishing, malware/scam delivery
19 Is the address bar hidden when typing to a fake (e.g., canvas-created) textbox? Novel Phishing, malware/scam delivery

Security
Indicators

20 Is the favicon placed next to padlock icon? [4, 5, 14, 37] MITM attack, Phishing
21–22 When rendering an HTTPS page, is the address bar displayed the same in the

presence of mixed content (image and JavaScript) as in its absence?
[9] MITM attack

23 Is a webpage with self-signed certificate rendered without warnings? [4, 5, 14, 37] MITM attack, Phishing

Content

24 Can an iframe expand its size past the one defined by its parent frame? [3, 6] Phishing
25 Is a mixed-content image resource loaded? [9] MITM attack
26 Is a mixed-content JavaScript script executed? [9] MITM attack
27 Is JavaScript code included in a self-signed website executed before the warn-

ing is accepted?
Novel Phishing, MITM attack

https://www.facebook.com

domain-verified vs. extended-verification certificates [4, 5, 14, 38].
In our work, we develop ABBs for identifying the confusable place-
ment of a favicon next to the place where the SSL-lock appears
(ABB #20), lack of warnings for mixed content (ABBs #21–22), and
lack of warnings for self-signed certificates (ABB #23).

Next to security indicators, we also develop four additional ABBs
that quantify a mobile browser’s risk to dangerous content. Specifi-
cally, we gauge whether an iframe can expand its dimensions past
what is specified by the parent frame (ABB #24, originally described
by Amrutkar et al. [3]), whether a browser renders mixed-content
images and JavaScript (ABBs #25–26), and whether JavaScript code
located on a self-signed page would execute before a user accepts
the certificate warning (ABB #27).

Automatic Vulnerabilities. During pilot experiments with Hind-
sight and our 27 ABBs, we realized that not all browsers behave as
one would expect. That is, there exist browsers that constantly hide
their URL bars, or browsers that always give preference to showing
the title of a page, instead of its URL. We take advantage of this
behavior by adding an extra test that quantifies whether a browser
shows, by default, its URL and/or title bars, and whether both are
present or the browser gives preference to one over the other. Using
the results of these tests, we may be able to immediately consider
the browser vulnerable to some of ABBs in Table 1. For example,
if a browser constantly hides its URL bar, building blocks that de-
termine which part of the URL a browser shows (ABBs #7–9) are
automatically labeled as vulnerable, because an attacker, if he so
chooses, can draw a fake address bar showing an arbitrary URL.
Similarly, for such a browser, tests that determine whether an ad-
dress bar is hidden when a user turns her phone to Landscape mode
(ABB #14), or scrolls (ABBs #15–16), or types into a text box (ABBs
#17–19) are also marked as vulnerable.

3 DATA COLLECTION
The app markets of modern smartphones offer a significantly larger
set of browser choices, compared to traditional desktop browsers.
The Google Play store houses hundreds of differentmobile browsers,
each one advertising its own differentiating features including voice-
control [18], reduction of data usage [21, 22], increased perfor-
mance [19], and ad-block/anti-tracker integration [17, 20].

At the same time, while the Google Play store is the authoritative
market for up-to-date apps, it does not provide older versions of
apps which are necessary for studying the evolution of vulnerabili-
ties across time and mobile browsers. Past work in mobile browser
security did not have such requirements since researchers used the
most recent browser versions at the time of their experiments. In
the following sections, we describe our methodology for collect-
ing current and past versions of mobile browsers (together with
important metadata), allowing us to compile a dataset compris-
ing thousands of mobile browser APKs spanning more than a 120
different browser families.

3.1 Mobile Browsers Dataset
To obtain a comprehensive set of mobile browsers we performed
the following data collection and processing steps:

Table 2: Browser ranks

Rank # Installations # browsers Example Browser

1 1,000–5,000 MM 1 com.android.chrome
2 100–500 MM 3 org.mozilla.firefox
3 50–100 MM 4 mobi.mgeek.TunnyBrowser
.
.
.

.

.

.
.
.
.

.

.

.

13 500–1,000 2 com.shark.sharkbrowser

Table 3: Filtering and processing the browser APKs

Dataset # of APKs

Raw dataset 4,612
Browser duplicates 1,416
Non-modern browsers 152
Installation failure 76
Crash on launch 135
Failed splash bypass 498
Unrecognizable address bar 11
Final dataset 2,324

Table 4: Number of APKs and browser families per year

Year 2011 2012 2013 2014 2015 2016

Browser APKs 5 89 367 505 755 603
Browser families 4 21 41 54 94 77

Collecting browser families. Using Selenium [34] we automati-
cally searched for the keyword “browser” in the Google Play Store
and recorded the results. Through manual analysis, we filtered out
non-web browsers (e.g., file browsers). Table 2 shows a small sam-
ple of browser families that we collected, ranging from browsers
with billions of installations (e.g. Google Chrome) to ones with less
than 1K installations (e.g. Shark Browser). The browser families are
divided into 13 ranks according to their number of installations.

Crawling browser versions. To obtain older browser versions,
we resorted to third-party websites and alternative app markets.
Specifically, we build website-specific crawlers and collected as
many APKs as possible from the following six online sources: An-
droidapps, Apkhere, Apkmirror, Apkpure, Uptodown, and Aptoide.
In some cases, such as Aptoide, collecting older versions meant
installing third-party market apps and then reverse-engineering the
way with which they downloaded older APKs from their servers.
Through this process we collected a total of 4,612 individual APKs.
Our data collection process for both the Google Play Store and the
alternative sources was conducted in August 2016.

Filtering. To arrive at a representative set of mobile browsers, we
performed rounds of filtering on the raw dataset of 4,612 APKs. As
shown in Table 3, we first removed duplicates of the same browsers
collected from different data sources. We identify a unique APK as a
tuple of (Package Name, Version Name,MD5sum), where the Package
Name defines a browser family and the Version Name indicates a
particular version of that browser. Each APK file was additionally

labeled with its MD5 hash to remove even more duplicates that
represent builds of the same browser but with different Android
targets. Specifically, we used the MD5 hash of the .SF file under
META-INF/ subdirectory that already contains the hashes of various
inner resources. Through this duplicate filtering, we removed 1,416
repeated APK files.

Next, we attempted to install a browser and subsequently visit a
simple HTML page showing images and using JavaScript. We argue
that rendering images and executing JavaScript are the bare mini-
mum requirements for a modern browser that aspires to be used to
browse today’s web. This process allowed us to eliminate browser
apps that would not install, browsers that would crash while launch-
ing, and niche, text-only browsers (e.g. com.weejim.app.lynx)
which are not going to be used by everyday web users.

In our final step, we had to filter the APKs which our browser-
agnostic vulnerability testing framework, Hindsight, was unable to
evaluate. For 498 APKs, Hindsight was unable to bypass a mobile
browser’s splash screen. One must remember that browser devel-
opers are free to show an arbitrary number of menus and dialogues
(e.g., the features of the browser, terms and conditions, choice of
language, etc.) before allowing users to utilize their browser. De-
spite our Splash Bypass Algorithm (Section 4.2.3), Hindsight is not
always able to identify the series of actions necessary for bypassing
the splash screen. Next to splash screens, Hindsight also needs to
automatically identify the placement and contents of a browser’s
address bar, a complicated process which, despite our techniques
described in Section 4.2.1, can occasionally fail (11 APKs). Overall,
we could reliably evaluate 2,324 APK files belonging to 128 browser
families, which represent modern and workingmobile browsers. On
average, our dataset includes 18 versions for each browser family.
Figure 2 shows how the number of APKs grows with the fraction
of browser families. All statistics presented in the rest of this paper
are based on this set of browsers.

3.2 Metadata Extraction
To be able to evaluate each mobile browser against our attack
building blocks (ABBs) and to study the evolution of vulnerabilities
through time, we need to extract information about the platform
on which any given APK can run, its release date, and any intent
metadata necessary for executing it.

App usagemetadata. To identify the appropriate device on which
an APK can be installed and run, we extract APK properties, such
as, native-code, sdkVersion and targetSdkVersion. The native-code
indicates which architecture and instruction set an app depends
on, whereas the sdkVersion and targetSdkVersion work in tandem to
set compatible Android API levels. Our goal is to run an APK on a
device having an Android API level closest to the targetSdkVersion
and greater than sdkVersion. Section 4.2.2 describes our methodol-
ogy in greater detail. We also extract the activities necessasry for
the ADB-based launching of the browser.

App release date metadata. For our longitudinal study of UI vul-
nerabilities, we need to be able to provide a release timestamp
for each APK in our dataset with sufficient accuracy. Through ex-
perimentation, we discovered that a relatively accurate way of
obtaining this information is by extracting the modification time of

0%

25%

50%

75%

100%

0 50 100 150
Number of APKs

F
ra

ct
io

n
of

 b
ro

w
se

r
fa

m
ili

es

Figure 2: ECDF for the number of browser APKs vs. fraction of
browser families

.RSA or .DSA file under META-INF/ subdirectory. These timestamps
are good proxies for the time of signing an Android app and thus
its release. To avoid errors, we limit ourselves to extracting the
year of each release and cross-validate our findings, when possible,
with the dates provided on the AppBrain website for some of the
collected APKs. We show the distribution of the collected APKs
from 2011 to 2016 in Table 4.

Table 5 shows the ranges of versions and distribution of APKs for
six popular browser families. For instance, we evaluated a total of 41
different versions of Google Chrome collected by August 2016. The
oldest one is in year 2013 with version 29.0.1547.72 and the latest is
in August of year 2016 with version 51.0.2704.81. This version was
the newest one at the time of our data collection. On average, we
have at least 10 different versions per year for Google Chrome.

4 TESTING FRAMEWORK AND
METHODOLOGY

Manually testing tens of ABBs on thousands of browsers is a non-
starter. For each browser, one has to install it, bypass the splash
screen that many browsers display upon the first use, and then test
the ABBs on that browser. Each test involves loading a webpage,
mimicking a user’s interaction with that page, and then analyzing
the final rendered output to identify vulnerabilities. Moreover, this
process of “input then analyse” may often have to be repeated
multiple times in a single test. It would take human analysts many
months to complete a single round of tests, and even then they
are bound to make numerous mistakes in the course of testing.
Therefore, one needs an automated framework to run the tests.

4.1 Hindsight Framework Architecture
We have designed and implemented an automated vulnerability
testing framework called Hindsight. Figure 3 shows the main com-
ponents and processing steps of the framework. In Hindsight, each
input APK goes through four general processing steps: (1) SDK
assignment, (2) installation and splash-screen bypassing, (3) ABB
testing, and (4) results evaluation.

In step (1), Hindsight decides on a suitable version of Android
capable of running the browser. In step (2), it installs the APK on
an Android device running that version. It then checks that the
installed browser is ready for testing by pointing it to a simple
webpage. Some APKs crash at this stage and are excluded from
further testing. Some other browsers display one or more initial

Table 5: Details of the version-span of APKs for the top six mobile browsers

Rank Package Name Oldest Version Latest Version # of versions Avg. per year

1 com.android.chrome 29.0.1547.72 (2013) 51.0.2704.81 (2016) 41 10.25
2 org.mozilla.firefox 9.0 (2011) 47.0 (2016) 68 11.33
2 com.UCMobile.intl 8.5.1 (2012) 10.10.8.820 (2016) 44 8.8
2 com.opera.browser 14.0.1074.57453 (2013) 37.0.2192.105088 (2016) 34 8.5
3 mobi.mgeek.TunnyBrowser 8.5.1 (2012) 11.5.8 (2016) 64 12.8
3 com.opera.mini.native 8.0.1739.87973 (2015) 18.0.2254.106200 (2016) 26 13

ABB1.html . . .ABB2.html ABBn.html

Web Server

Control Computer

Android Debug Bridge (ADB)

. . .

SDK

Assignment

1
Install

& Splash

Bypass

2
ABB1...
ABBn

Testing

Logic

3

ABB1...
ABBn

Evaluation

Logic

4

ABB3.html

UI XML &
screenshots

Server logs &
AJAX data

Figure 3: Architecture of the Hindsight framework

screens—which we call splash screens—that need to be bypassed
before the browser is ready for testing. Section 4.2.3 explains how
this is done automatically. If splash bypass fails, the APK is excluded
from further testing. Table 3 shows the number of APKs excluded
due to installation failure, crashing or splash-bypass failure.

In steps (3) and (4), each APK is exposed to each of the ABBs and
the results are checked for vulnerability. In Hindsight, each ABB
consists of three different pieces: i) the ABB HTML file which is
a carefully designed webpage containing the necessary elements
to test for the vulnerability, ii) the ABB test logic which contains
the necessary logic to interact with and provide UI inputs to the
Android device during the test, and iii) the ABB evaluation logic
that analyzes all the information collected during the test run to
determine the vulnerability of the tested APK to that ABB. This
pluggable design makes it fairly straightforward to add newABBs to
the framework, asHindsight does notmake any a priori assumptions
about these ABB parts.

Architecturally, the Hindsight framework consists of three main
components. Multiple Android devices (currently 4) are used to run
tests in parallel. Each device runs a different version of the Android
OS to allow catering to different API levels needed by our APKs. A
controlling computer runs all the installation, splash-bypass, ABB
testing, and ABB evaluation logic. This computer is connected to
the Android devices through USB ports and uses the Android Debug
Bridge (ADB) to communicate with them. All browser installations
and UI interactions needed for the splash-bypassing and testing
logic use ADB commands. Finally, a web server is used to serve
the ABB HTML pages to the Android devices during the tests. This
web server also collects some crucial logs that are used by the ABB
evaluation logic to determine vulnerabilities (Section 4.2.4).

The following sections provides more information about the chal-
lenges of building such an automated framework, and techniques
used in Hindsight to overcome them.

4.2 Building a Browser-Agnostic Framework
The biggest challenge in building Hindsight is to make it browser-
agnostic. On the one hand, this is a must-have feature for Hindsight
because it has to support a wide variety of different browser families.
On the other hand, it is a non-trivial challenge as browsers do not
follow standardized application layouts and render webpages in
different ways using different engines.

Even as simple a problem as identifying the address bar—that is
required by several of our ABBs—becomes a challenge as Hindsight
cannot a priori know which rendered UI element is the address bar,
if any, and where it is located. Such decisions are made by browser
developers and are not known to the testing framework. The frame-
work can only observe the rendered UI and has to extract all the
needed information by analyzing that UI in a browser-agnostic
manner. Such analysis is not only needed at the end of a test run to
determine vulnerability, but also often required during a test run to
identify UI elements to interact with—for example, to know where
to tap in a loaded webpage in order to type in a text box.

The need to be browser-agnostic poses multiple design and im-
plementation challenges in each of the four processing steps men-
tioned above. Below, we will discuss some of these challenges and
how Hindsight copes with them.

4.2.1 Browser-Agnostic UI Analysis. A major challenge faced
by steps (2)–(4) of the framework, is to analyze the application UI
to determine the presence and location of certain elements on the
screen. The rendered UI usually consists of two distinct parts. The
first part includes the application-level UI elements, such as the
address bar, padlock, favicon and tab headers. The second part is
the webpage content.

Most Android applications, browsers included, use standard
Android UI libraries for application-level elements. This allows
Hindsight to use a standard Android toolset, called UI Automa-
tor, to capture an XML dump of the application UI’s Document
Object Model (DOM) tree which provides different attributes for
each application-level UI element, including its text or image as
well as screen coordinates. This greatly simplifies UI analysis for
application-level elements.

For the webpage elements, however, we cannot rely on such
textual dumps. This is because the vast majority of browsers do not
expose the rendered webpage elements as part of the application-
level DOM tree. Therefore, if one needs to, e.g., locate a certain
HTML button on the screen, it cannot rely on the XML dump

provided by UI Automator. There might be ad hoc APIs and drivers
to obtain this information for some browsers, but our framework
requires a method that works seamlessly for all browsers.

Therefore, Hindsight uses Optical Character Recognition (OCR)
to analyze page content: it captures the current screenshot (using
ADB’s screencap command), and then uses OCR to search for
textual clues that are carefully built into the testedwebpage to locate
the elements (buttons, images, text boxes, etc.) to interact with. The
specific text to search for is ABB-specific and is determined by
the ABB testing and evaluation logic mentioned earlier. Currently,
Hindsight uses a combination of the Tesseract OCR Engine [13] and
Google’s Vision API [31] for this functionality.

Although simple in theory, the OCR method is fraught with non-
trivial problems. Firstly, browsers use different rendering engines
that render the same HTML page in vastly different ways. For
one thing, there is no browser-agnostic mapping between the on-
screen coordinates of rendered elements and their HTML-specified
location, even if the HTML file specifies absolute locations for the
elements. As another example, different browsers may use different
font sizes to render the same text in a page. To cope with this
problem—after observing how a large number of browsers render
webpages—we concluded that critical text elements in ABB HTML
pages have to be repeated multiple times with different font sizes
and families to increase their chances of being picked up by OCR.

The second problem with OCR is that the rendered webpage
is not always the only content shown in a browser window. Of-
ten, browsers may include messages (such as usage tips, update
reminders, etc.) that are not part of our HTML, and may even cover
some of the content that is critical to the OCR analysis. We deal
with this problem in two ways. First, as often these message boxes
are part of the application-level DOM, we use a technique similar to
what is described in Section 4.2.3 to automatically click through and
dismiss them, before the OCR analysis begins. Second, we design
the ABB HTML pages such that the critical elements are located
close to the center of the screen—to the extent that this is possible
in a browser-agnostic fashion—to reduce their chances of being
covered by such messages.

It is worth mentioning that, in addition to webpage content, OCR
is also used as a secondary method for locating application-level UI
elements. This is because some browsers do not always render the
application-level elements using standard Android libraries, and
for some other browsers, the dumped XML data is not consistent
with the visible UI of the application. In these cases, OCR is used
as a backup method to locate the application-level elements.

This hybrid of XML dumps and OCR has resulted in a robust
browser-agnostic analysis infrastructure that works well in practice,
as indicated by our manual verification results (Section 4.3).

4.2.2 SDK Assignment. Each APK requires certain Android APIs
to function properly. In Android, the API level is denoted by the
so-called Software Development Kit (SDK) version number: a mono-
tonically increasing number with 24 being the highest at the time of
this writing. APKs contain a manifest file which includes the mini-
mum (skdVersion) and target (targetSdkVersion) SDKs the application
supports. Ideally, one should test each APK on all SDK versions in
this range as it is conceivable that browsers could behave differently
given different SDK features (e.g., the browser could use different

API calls given different SDK versions). However, given the limited
number of physical Android devices in the current framework, and
that each device can have only one Android version installed at a
time, this would increase the testing time significantly.

To keep the problem manageable, a compromise was made. We
first analyzed all the APKs and collected their SDK requirements.
For each APK, we considered SDK versions in the range [minimum,
target]. Then, we chose four different SDK versions that would
allow us to cover all the tested APKs, and installed each of them
on a different Android device. For the current dataset, these are
SDKs 16, 18, 21 and 23, corresponding to Android versions 4.1.2,
4.3, 5.0 and 6.0, respectively. Hindsight uses this knowledge of the
installed SDK versions to approximate an even distribution of APKs
to devices to maximize the testing speed, while ensuring that each
APK still gets to run on a supported SDK version. All of this is done
in a browser-agnostic fashion, just by extracting the metadata that
is available in each APK.

4.2.3 APK Installation and Splash-Screen Bypassing. In the next
step, Hindsight uses ADB to install each APK on its assigned device.
To check the installation success, it launches the browser and directs
it to a specific webpage, and checks for its successful loading. As
Table 3 shows, there are 211 APKs that fail in this step because of
either an installation failure or crash upon launch. Currently, we are
excluding these APKs from further testing; in the future, Hindsight
will try to install and run them on other Android versions.

A more serious challenge is to bypass the splash screens. Ide-
ally, a browser should just display the requested webpage when
launched. However, a large fraction of browsers (1,600+ APKs in
the current dataset), instead show other initial screens that have to
be bypassed before the webpage is displayed. These screens include
a variety of content from permission requests, to advertisements, to
introduction to the application itself—and often, multiple of these.
Hindsight cannot test the browser without bypassing these screens.

To deal with advertisements embedded by browsers, we tried a
variety of methods and the most successful solution was to use a
third-party AD blocking application called AdGuard [1] that works
by monitoring and filtering the network traffic into and out of
the device. This gives us a browser-agnostic method of filtering
advertisements that works quite well in practice.

For other splash bypass problems, our approach is to automati-
cally mimic a user’s interaction with the application. Informed by
our analysis of a large number of splash screens of tested browsers,
Hindsight uses a generic, browser-agnostic method of delivering
guided tapping and swiping inputs (using ADB) to the device. In
each step, the UI is analyzed to find text that often indicates tap-
pable buttons such as “Next”, “Continue”, “Okay”, etc. If such text
is found, a tap event is delivered to that location on the screen. If
not, Hindsight tries swiping the screen to move to the next screen.
Then, the UI is analyzed again to determine if we are at expected
webpage or there are more splash screens. This process is repeated
up to a configurable maximum number of times.

This method works well in practice for most browsers. In the
current dataset, 1,606 APKs show splash screens of which Hindsight
can bypass 1,108. Of the remaining ones, there are some whose
splash screens are hard to analyze to find tappable items, and some
that require more complex interactions (such as signing up for an

account or entering one’s email address) that cannot be bypassed
using this method. We exclude such APKs from further testing.

4.2.4 ABB Design, Testing, and Evaluation. The main challenges
of these steps have to do with UI analysis, as explained in Sec-
tion 4.2.1. Here we discuss two other problems that required cre-
ative solutions in Hindsight. We should emphasize that this is just
a sampler of the common challenges we faced; there were multiple
other ABB design challenges and tricks that we had to omit due to
space limitations.

To begin, we should note that some testing data cannot be easily
extracted through UI analysis. For example, in ABBs #1–6, we need
to determine if an input event was routed to an invisible iframe, or
in ABB #24, we need to know an iframe’s dimension to detect bal-
looning. OCR-based UI analysis is not a reliable method to collect
such information. Instead, we can easily collect such information
using JavaScript in an ABB’s HTML file. However, there is no direct
communication channel to convey that information to the evalua-
tion logic that is running on the control computer (which talks to
the Android device using ADB). To solve this problem, Hindsight
creates such a communication channel by sending this information
as AJAX (Asynchronous JavaScript and XML) messages from the
ABB HTML page to the webserver where they are saved. During
ABB evaluation, this data is fetched by the evaluation logic and
used for vulnerability analysis. Moreover, for mixed-content-related
ABBs, we also fetch the HTTP server logs to determine whether a
particular resource was requested by the browser. Figure 3 shows
this side communication channel used by the evaluation logic.

Another major challenge was caused by browsers’ support for
multiple tabs. Most modern browsers can simultaneously have mul-
tiple open tabs and show the number of tabs, and sometimes the
page titles, in the application screen. This seemingly “benign” fea-
ture caused major trouble for some of our ABBs. For example, in
ABBs #21-22, we do a pixel-wise comparison between the screen-
shot of a pure-HTTPS page and a mixed-content page with the
same design. The goal is to identify the existence of mixed-content-
related icons or warnings, with the assumption that the only dif-
ference between the two versions would be the presence of the
mentioned warning signs. However, the tab headers and tab count
that many browsers show would also be different after opening the
second page, and this would result in erroneously concluding that
there is a difference between the two pages, even if there are no
such warning signs.

Unfortunately, there is no browser-agnostic way to close tabs,
and simply closing and re-launching the browser application in
between webpages will not help either because browsers often re-
open all previously open tabs upon re-launch. Hindsight solves this
problem as follows. Right after the browser is installed and any
potential splash screens are bypassed, Hindsight saves a copy of the
browser’s Android folder where the application saves its internal
settings and history. There is one such folder per application in
Android and its path is determined by the package name of the
APK, and is thus easy to find. This gives a pristine copy of the
application’s state where there are no open tabs. Before launching
the browser to load a new page, Hindsight copies this state back
to make sure there are no traces of previously open tabs in the
browser history. This will ensure that our screenshots are free

0%

25%

50%

75%

100%

0 5 10 15 20 25

Number of vulnerabilities

F
ra

ct
io

n
of

 A
P

K
s

Results

Lowerbound

Upperbound

Figure 4: ECDF of vulnerability vs. fraction of browser APKs

from the tab-related side effects that would otherwise cause testing
failures.

4.3 Verifying Hindsight Results
Since Hindsight is the first framework of its kind, there is no other
way to verify its results than to do it manually. To this end, we have
augmented our ABB testing logic to generate an analyst-friendly,
self-contained HTML file that includes, for every (APK, ABB) tuple,
1) all the device screenshots that were generated and used while
testing the ABB on the APK, and 2) the Hindsight’s vulnerability
analysis result generated by the ABB evaluation logic.

This HTML page is reviewed manually to determine whether
a human expert would concur with the automatically-generated
vulnerability result. If not so, a check-box in the HTML file is
ticked to mark that result as “Not Accepted”. All this information
is uploaded to a server and stored in a database to keep track of
verification results. This design allowed us to efficiently review
the results of Hindsight when applied to 2,324 APKs and precisely
quantify its correctness.

For the current dataset, it took approximately 60 person-hours
to finish one round of verification. The observed error rate is 1.5%
where the ABB evaluation logic makes a wrong judgement (both
false positives and false negatives). Overall, the fraction of “Not Ac-
cepted” results is low enough to considerHindsight results generally
dependable.

It is worth noting that such manual verification is only required
to debug Hindsight to establish the credibility of its implementation,
and does not need to be repeated every time Hindsight is used.

5 EVALUATION
Using Hindsight we tested each of the 2,324 browser APKs, belong-
ing to 128 distinct browser families, to the 27 attack building blocks
(ABBs) presented in Section 2. Out of more than 62K vulnerability
reports for different combinations of APK and ABBs, Hindsight
failed on 2,260 tests, i.e. the error rate (or more precisely, the uncer-
tainty rate) is approximately 3.6%. Note that this error rate includes
the 1.5% error rate due to false positives/false negatives discussed
in Section 4.3 as well as the cases where the framework itself knows
that there has been an error (e.g. browser crash, or inability to find
the URL bar). That covers 292 APKs or less than 12.6%, which have
at least one failed test. To account for this uncertainty we present,
where applicable, our results using a lower bound (i.e. all ABBs
marked as “Error” are, in reality, “Not Vulnerable”) and an upper

0%

25%

50%

75%

100%

Event routing URL Address bar Security indicators Content

Vulnerability class

%
 o

f b
ro

w
se

r
A

P
K

s

Browser Sample: Overall Popular

Figure 5: Fraction of browser APKs affected by at least one of ABBs
across five classes; whiskers denote the lower and upper bounds.

bound (i.e. all ABBs marked as “Error” are, in reality, “Vulnerable”)
of browser vulnerability.

5.1 General Findings
Overall, using Hindsight, we found that 2,292 of the 2,324 evaluated
APKs (98.6%), were vulnerable to at least one ABB. Figure 4 shows
how the number of vulnerabilities grows with the fraction of tested
browser APKs, i.e. 50% of APKs are vulnerable to more than 12
ABBs.

To understand which classes of ABBs are more successful than
others, in Figure 5, we show the vulnerability of browsers to the five
different types of ABBs (Event Routing, URL, Address Bar, Security
Indicators, and Content). A browser APK is marked vulnerable to a
class of attacks if it is vulnerable to at least one ABB belonging to
that class. Among others, we find that even the least popular class of
ABBs (Event Routing) affects more than 25% of the tested browser
APKs, with the most popular classes (URL and content) affecting
almost 100% of the evaluated browsers. Similarly, we see that APKs
belonging to popular browsers are, in general, as vulnerable as the
rest of the browsers and that our level of uncertainty (denoted via
whiskers at the top of each bar) does not alter the observed vulner-
ability trends. Figure 6 presents the same information grouped by
browser families. A browser family is marked vulnerable to a class
of attacks if at least one of its APKs is vulnerable to at least one
ABB belonging to that class. There, we see that i) the latest versions
of browser families are as vulnerable, if not more vulnerable, than
older versions of the same browser family, ii) the relative popularity
of vulnerability classes remains the same as for distinct APKs, and
iii) certain ABBs, such as, the ones belonging to the Address Bar
class, affect less browser families than individual APKs. The differ-
ences between Figure 5 and Figure 6 are because our 2,324 APKs are
not uniformly spread in the 128 browser families, allowing different
patterns to emerge when quantifying vulnerabilities as a fraction
of browser families versus as a fraction of APKs.

5.2 Longitudinal Analysis
One of the main motivations of our research is the rapid upgrade cy-
cle of modern browsers and its effect on vulnerability reports. Most
apps, including browsers, are updated on a weekly or monthly basis
including new features and bug fixes. As such, any quantification
of security that past researchers manually obtained [2, 3, 6, 30, 32]

0%

25%

50%

75%

100%

Event routing URL Address bar Security indicators Content

Vulnerability class

%
 o

f b
ro

w
se

r
fa

m
ili

es

APK Version: Any Older Latest

Figure 6: Fraction of browser families affected by at least one of
ABBs across five classess; whiskers denote the lower and upper
bounds.

●

●
●

●

●

●

12

13

14

15

16

17

2011 2012 2013 2014 2015 2016

Year span

A
vg

. n
um

be
r

of
 v

ul
ne

ra
bi

lit
ie

s

Results: ● Lowerbound Upperbound

(a) All browsers

●

●

● ●

5.0

7.5

10.0

12.5

15.0

17.5

2011 2012 2013 2014 2015 2016

Year span

A
vg

. n
um

be
r

of
 v

ul
ne

ra
bi

lit
ie

s

● Chrome

Dolphin

Firefox

Opera

Opera Mini

Overall

UC Browser

(b) Most popular browsers

Figure 7: Average number of vulnerabilities over the years

was already outdated by the time their research was made available
to the public. Since Hindsight is an automated, browser-agnostic
vulnerability testing framework, it allows us to, not only obtain
vulnerability reports for all latest browser apps but also, to study
the vulnerability trends through time.

Using years as our time granularity, we group APKs belonging
to the same browser family (via their package names), order them
according to their version numbers, and extract their release date
as described in Section 3.2.

Figure 7a reveals how the average number of vulnerabilities for
every browser APK varies from year to year, starting from 2011 (the
year of our oldest APK) to 2016 (the year of our most recent APKs).

Table 6: The most popular ABBs and their percentage of affected APKs and browser families per year

APKs Browser families

Top ABBs 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

2011 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22 (100%) 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22 (100%)
2012 9 (100%) 25 (97.75%) 10, 26 (96.63%) 7 (85.39%) 19 (58.42%) 9 (100%) 7, 25 (95.24%) 10, 26 (90.48%) 22 (80.95%) 21 (76.19%)
2013 9 (95.64%) 7 (95.37%) 25 (94.55%) 10 (74.93%) 26 (71.39%) 7, 9 (100%) 25 (95.12%) 10 (82.93%) 26 (80.49%) 22 (78.05%)
2014 9 (98.81%) 7 (98.42%) 25 (97.43%) 22 (83.37%) 26 (78.02%) 7, 9 (98.15%) 25 (96.30%) 22 (77.78%) 26 (74.07%) 21 (70.37%)
2015 25 (96.16%) 9 (94.44%) 7 (93.25%) 15 (76.03%) 18 (74.97%) 9 (98.94%) 25 (97.87%) 7 (96.81%) 22 (82.98%) 21 (71.28%)
2016 25 (96.68%) 9 (93.70%) 7 (93.20%) 22 (85.57%) 15, 18 (68.66%) 9 (100%) 7 (98.70%) 25 (97.40%) 22 (88.31%) 21 (67.53%)

As before, we present both the lower-bound and upper-bound of
vulnerabilities to account for errors during Hindsight’s runs. There
we observe a wave-like pattern with decreases in 2012 and 2015
and increases in the remaining years. At the same time, one can see
that there was never a year with browsers affected by, on average,
less than 11 vulnerabilities and that there are more vulnerabilities
in 2016 than there were in 2011 and 2012. The large difference
between upper-bound and lower-bound in 2011 is an artifact of
unstable versions of browsers which crash often and unpredictably
combined with the small overall number of APKs for 2011.

To quantify how popular browsers are different than the rest,
in Figure 7b, we show the average number of vulnerabilities per
year for six popular browsers. There we see that, while the number
of vulnerabilities is uniform when considering all browsers at the
same time (average number of vulnerabilities ranges from 11.5 to
13.4), different browser families exhibit different trends. Firefox
has been steadily decreasing in vulnerability since 2013 whereas
families like Opera, Dolphin, and Chrome have been increasing.
UC Browser exhibits a wave-like pattern and has, on average, the
most vulnerabilities of popular browsers in 2016.

Table 6 shows the most popular ABBs for the tested APKs and
browser families from 2011 through 2016. There we can see the
evolution from 2011 where all evaluated APKs and browser families
were vulnerable to thirteen different ABBs to the remaining years
where different ABBs, such as, #7, #9 (both related to how a browser
shows a long URL) and #25 (showingmixed-content images) emerge
as the most potent ones. ABBs #7 and #9 are dangerous because
they allow attackers to masquerade their websites as belonging
to trustworthy brands, and ABB #25 can be used to steal session
cookies that are not marked with HTTPOnly [40] and use them for
session hijacking attacks [9, 36]. On a more positive note, we see
that while most browsers used to execute JavaScript originating
from a mixed inclusion from 2012 to 2014 (ABB #26), this behavior
is becoming less popular.

Lastly, Figure 8 shows how different classes of vulnerabilities
have affected mobile browsers over the years. There we see that
even though most classes have had a fairly uniform effect on
browser APKs, event routing has been increasing in popularity
since 2014. Since Hindsight treats every browser as a black box it
cannot provide us with the reason why event-routing ABBs have
become more applicable than they used to be. Through manual
investigation and experimentation we concluded that one of the
main reasons for this is a vulnerable behavior of the Chromium’s
Touch Adjustment feature used in Android’s WebView with SDK
version 23, and consequently browsers using embedded WebView
component were affected.

● ● ●
●

●

●

0%

25%

50%

75%

100%

2011 2012 2013 2014 2015 2016

Year span

%
 o

f a
ffe

ct
ed

 A
P

K
s

● Event routing URL Address bar Security indicators Content

Figure 8: Fraction of APKs affected by at least one ABB in a class
across the years

5.3 Popularity versus Vulnerability
As described in Section 3.1, the 128 browser families evaluated in
this paper are as popular as Google Chromewith more than a billion
installations (Rank 1) and as “unpopular” as the Shark Browser with
less than 1K installations (Rank 13).

In Figure 9a, we explore the correlation between the ranking of
each APK and its vulnerability to the five classes of ABBs. There
we see that the most popular browsers are not necessarily the most
secure. In fact, we observe that browsers that are in the last three
ranks of popularity (10-13) exhibit significantly less vulnerabilities
than more popular browsers. For example, upon manual inspec-
tion of the Shark browser (located in Rank 13), we witnessed that
browser never show a page’s title and always shows the URL bar,
regardless of swiping, rotation, and page length. Because of these
design choices, the Shark browser is not vulnerable to any of the
ABBs belonging to the Address Bar class.

Figure 9b focuses on the vulnerabilities exhibited by the APKs
belonging to the six most popular browsers families. We observe
that 100% of the APKs belonging to all six families have at least one
vulnerability and Chrome and Opera exhibit similar vulnerability
patterns. Firefox appears to be the most secure of the six browsers
(confirming the time series presented earlier in Figure 7b) whereas,
next to Firefox, UC Browser and Dolphin are the only browsers not
vulnerable to the evaluated Event-Routing ABBs.

5.4 HTTPS
In recent years, HTTPS has been steadily increasing in adoption
partly because of initiatives like Let’s Encrypt which assists web-
sites in obtain free-of-charge certificates [25], search engines us-
ing HTTPS as a positive ranking signal [7], and modern desktop

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13
Rank of installs

%
 o

f a
ffe

ct
ed

 A
PK

s

Event routing URL Address bar Security indicators Content Any

0%

25%

50%

75%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13
Rank of installs

%
 o

f a
ffe

ct
ed

 A
P

K
s

(a) Accross ranking levels

0%

25%

50%

75%

100%

Chrome Firefox UC Browser Opera Dolphin Opera Mini
Popular browsers

(b) Top-6 popular browsers

Figure 9: Fraction of APKs affected by at least one ABB in a class

0%

25%

50%

75%

100%

Favicon

placement

Mixe
d content

warning (im
age)

Mixe
d content

load (im
age)

Self−signed

website load

Mixe
d content

warning (JS)

Mixe
d content

load (JS)
JS execution

in self−signed

website

Test description

%
 o

f a
ffe

ct
ed

 A
P

K
s/

 b
ro

w
se

rs APKs Browser families

Figure 10: Analysis of HTTPS related ABBs

browsers which have started showing negative indicators for pages
served over HTTP [12, 14, 33].

Due to the increased focus on HTTPS, in this section, we briefly
focus on the HTTPS-related ABBs of the ones shown in Table 1. In
Figure 10, we compare how different HTTPS-related ABBs affect
browser APKs and browser families. We find that although less than
17% APKs and browser families are vulnerable to favicon-padlock
placement (ABB # 20) and self-signed certificates ABBs (ABB # 23,
ABB # 27), over 50% of them execute the code originating from the
mixed inclusion (ABB #26). Moreover, we observe that more than
90% browser APKs and families do not use different indicators to
help users differentiate between HTTPS websites with no mixed
inclusions and those with mixed inclusions. We argue that, even for
browsers that block mixed content, this is an undesirable behavior
because it allows mixed inclusions to go by unnoticed for a longer
period of time thereby increasing the window of exploitation for
users who happen to utilize browsers that render mixed content.

5.5 Patterns of Vulnerability
The longitudinal analysis presented in the Section 5.2 demonstrates
that most browser families are either consistently vulnerable to
the same number of attacks or, worse, become more vulnerable
with every passing year. At the same time, one may still wonder
whether the vulnerabilities that Hindsight allows us to quantify
were “always” part of a browser’s code (present in the oldest version
of the browser available in our dataset) or were added during some

later time. In this section we answer this question by analyzing the
evolution of vulnerability patterns for each of our 27 ABBs.

By analyzing the Yes/No results of our ABBs for each version
of a given browser family, we discovered that we can categorize
most vulnerability patterns using six patterns: i) always vulnerable
(YES), ii) always safe (NO), iii) introduction of a new vulnerability
(noYES), iv) removal of an existing vulnerability (yesNO), v) tem-
porary vulnerable (noYESno), and vi) temporary safe (yesNOyes).
Figure 11 shows the distribution of these six patterns per each ABB
number and class of vulnerabilities.

For some vulnerability classes (like Event Routing and Address
Bar), the distribution of patterns is similar across ABBs. Contrast-
ingly, for vulnerabilities belonging to the Security Indicators class,
in additions to ABBs that covary (e.g., #20 and #23), we also observe
ABBs with clearly different patterns (e.g., #21 and #22). Our find-
ings suggest that for vulnerabilities related to event routing and a
browser’s address bar, the correspondent ABBs are interconnected
and rely on a single cause (e.g. the handling of touch events and
the automatic hiding of the address bar). This is promising because,
if true, it allows for multiple attacks to be stopped by a few secure
design choices. This, however, is not true for ABBs related to Con-
tent, URL and Security indicators, meaning that each vulnerability
will likely require a different countermeasure.

Overall, on Figure 11 we observe highly undesirable, from a secu-
rity perspective, cases where YES and noYES patterns dramatically
dominate, e.g., for ABBs #7, #9, #21, #22, and #25. Moreover, we also
find cases which reveal the temporary adoption of insecure features
(noYESno) and the regression from a secure version to a less secure
one (yesNOyes). As an example of the noYESno pattern we find
that the Dolphin Browser Express was, for a number of versions,
hiding the address bar while the user was giving input. Similarly,
Opera Mini temporary showed a page’s title instead of its URL.
An example of the regression pattern (yesNOyes) is the Dolphin
browser which was temporarily showing the TLD+1 part of a do-
main when the URL was long but later reverted back to its original
insecure behavior (showing the left-most part of a URL). Similarly,
the ASUS browser temporarily stopped hiding its address bar when
a user was scrolling a long page. These patterns are clear signs of
security versus usability trade-offs, which highlights the need of
educating both browser vendors as well as users about mobile web
UI attacks and equipping them with tools, such as, Hindsight, that

Evolution Pattern: Unknown noYESno yesNOyes noYES yesNO NO YES

Content

Security indicators

URL

0 32 64 96 128

0 32 64 96 128

0 32 64 96 128

10

9

8

7

23

22

21

20

27

26

25

24

A
tta

ck
 b

ui
ld

in
g

bl
oc

k
#

Event Routing

0 32 64 96 128

 6

 5

 4

 3

 2

 1

Address bar

0 32 64 96 128

19

18

17

16

15

14

13

12

11

Number of affected browser families

Figure 11: Patterns of vulnerability for browser families

allows for continuous vulnerability assessment. Fortunately, next
to the aforementioned undesirable patterns, we also observe stable
trends of desirable “yesNO” and “NO” patterns for particular ABBs.

6 DISCUSSION
Summary of findings. The results that we were able to retrieve
using Hindsight against 2,324 browser APKs belonging to 128 dif-
ferent browser paint a fairly disconcerting picture of mobile web
security. We found that 98.6% of the evaluated APKs were vulner-
able to at least one of our 27 attack building blocks, with 50% of
APKs being vulnerable to more than 12 building blocks (Section 5.1).
By performing longitudinal measurements, we observed that many
browsers become less secure as years go by (Section 5.2) and that
popular browsers are often more vulnerable to our building blocks
than less popular ones (Section 5.3).

Ethical Disclosure. Even though all of our ABBs can be used to
craft attacks against users, they are not vulnerabilities that could
lead to drive-by exploitations. That is, most of our ABBs can be used
to increase the success chances of social engineering attacks (like
phishing or the user-initiated installation of malware) but they can
not be weaponized to compromise mobile devices automatically at a
large scale. Despite not fitting the mold of traditional vulnerabilities,
we are currently in the process of reaching out to the vendors of
mobile browsers to ethically disclose our findings and understand
to what extent they are aware of the uncovered issues and how
they intend to address them.

Limitations and Future Work. Hindsight is currently utilizing
real smartphones, each of which is running a different version of
the Android operating system and SDK version. Even though this
choice was a conscious one motivated by the desire to experiment
on real devices so that our findings are free from emulation artifacts,
we also understand the limitations of our approach in terms of
scalability, i.e. how fast can we evaluate any given browser against a
series of attacks, and in terms of applicability, i.e. do the same attacks
work against the same browser when that is installed on a tablet
that is equipped with a larger screen? For these reasons, we intend

to develop an emulation-backed version of Hindsight, experiment
with a large array of emulated devices and configurations, and
compare our results with the ones reported in this paper.

A separate limitation is that all security assessments are based
on our collection of 27 ABBs automatically evaluated by Hindsight.
It is definitely possible that browsers that are performing poorly
against our evaluated attacks would perform better in the presence
of a different set of tests. As such, we do not intend for our results
to be used as an authoritative guide for identifying the most secure
mobile browser. Instead, we hope that our results will motivate the
vendors of mobile browsers to revisit the design of their UIs and
strengthen their browsers against attacks.

7 RELATEDWORK
To the best of our knowledge this paper is the first systematic
study of the evolution of UI attacks in mobile browsers, spanning
thousands of browser versions and hundreds of browser families.
The motivation to design and build Hindsight came from realizing
that all the novel results published in prior work were destined
to always be outdated since the attacks were performed manually
against a limited number of browser families and versions. We
briefly discuss this prior work below.

Attacks against mobile browsers. In 2008, Niu et al. were the
first to identify the security problems associated with browsers
used in devices with small screens [30], well before the current
commercial success of smartphones. The authors evaluated the Sa-
fari mobile browser available in the original iPhone and the Opera
browser available in two Nintendo gaming consoles finding issues,
such as, URL truncation (browsers showing the beginning and end
of a long URL skipping the middle), the automatic hiding of the URL
bar by programmatically scrolling by a single pixel, or the altogether
absence of the URL bar. In 2010, Rydstedt et al. discovered that many
mobile versions of popular websites were lacking frame-busting
code and introduced “tapjacking”, a mobile equivalent of clickjack-
ing which could be abused to, among others, steal a home router’s
WPA keys [32]. Felt and Wagner, in 2011, investigated the threat of
phishing attacks on mobile devices by exploring the transitions be-
tween websites and apps and the difficulty of ascertaining whether
a login prompt originates from a trusted website/app versus a mali-
cious one that is spoofing a trusted one [15]. Many of our attack
building blocks were inspired by the work of Amrutkar et al. [2–5]
who manually evaluated ten smartphone and three tablet browsers
and compared them to traditional desktop browsers. The authors
identified the issues of unexpected event routing, the ballooning of
iframes, the absence of a URL bar after an iframe-originating redi-
rection, and inconsistencies in terms of security indicator presence
and location, despite W3C guidelines [38].

WebView Security. Both Android and iOS provide a WebView
class (UIWebView in iOS) which apps can use to show web content
to users. Prior research has identified a number of security issues
with WebView APIs that allow both malicious apps to attack be-
nign websites as well as malicious websites to abuse benign but
vulnerable apps that render them using WebView [10, 26, 27, 29].
In our work, we chose to treat each mobile browser as a black box,
launching generic UI attacks and observing their outcome. As such,

while WebView-specific vulnerabilities could be straightforwardly
added as new attack building blocks to Hindsight, we consider them
out of scope for this specific paper.

Inconsistencies across desktop browsers. Researchers have in
the past identified inconsistencies in the implementations of secu-
rity mechanisms across browsers which could be abused to attack
them. Singh et al. investigated access control inconsistencies among
popular browsers in terms of principal labeling and its effect on,
among others, the Same-Origin Policy [35]. Zheng et al. investigated
the handling of cookies in modern browsers and identified imple-
mentation quirks in the cookie handling and cookie storing code of
certain browsers that enabled network attackers to perform cookie
injection attacks [39]. Hothersall-Thomas et al. presented Browser-
Audit, a website that performs 400 checks of security mechanisms
and used it to test the correctness of modern desktop browsers [23].
Even though Hindsight and BrowserAudit are conceptually similar,
our work focuses on testing thousands of mobile browser versions
(with all the difficulties associated with automatically installing
them and dealing with splash screens, ads, and crashes) and UI
attacks whose success cannot be ascertained by the attack website,
requiring us to develop the mechanisms discussed in Section 4.

8 CONCLUSION
As mobile devices increase in popularity and, for some, replace
the need for a desktop computer, it is important that we under-
stand their security posture and what areas we need to improve
upon. In this paper, we investigated the seemingly forgotten prob-
lem of UI vulnerabilities in mobile browsers where attackers can
take advantage of mobile browser idiosyncrasies to better social
engineer users and exfiltrate their data. Motivated by the desire
to move away from snapshot-based measurements (i.e., where re-
searchers study what is available to them at the time of their experi-
ments) we collected thousands of mobile browser versions spanning
hundreds of browser families and developed Hindsight, the first
dynamic-analysis, browser-agnostic testing framework for gauging
the vulnerability of mobile web browsers to UI attacks. Using Hind-
sight, we were able to quantify the vulnerability of mobile browsers
through time, finding, among others, that i) the vast majority of web
browsers are vulnerable to one or more of our evaluated attacks,
ii) mobile browsers seem to be getting less secure as years go by,
and iii) the popularity of a browser and security are not necessarily
correlated. Our hope is that this study will motivate the building
of more security-friendly UIs for mobile web browsers and the
reviewing of some of the existing design decisions that attackers
can straightforwardly abuse to victimize users.

Acknowledgments:
We thank the reviewers for their valuable feedback. This work
was supported by the Office of Naval Research (ONR) under grant
N00014-17-1-2541 and by the National Science Foundation (NSF)
under grants CNS-1617593 and CNS-1527086. Some of our exper-
iments were conducted with equipment purchased through NSF
CISE Research Infrastructure Grant No. 1405641.

Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not

necessarily reflect the views of the Office of Naval Research or the
National Science Foundation.

REFERENCES
[1] AdGuard. 2009–2017. ad blocker and anti-tracker. https://adguard.com/en/

welcome.html. (2009–2017).
[2] Chaitrali Amrutkar, Kapil Singh, Arunabh Verma, and Patrick Traynor. 2011. On

the Disparity of Display Security in Mobile and TraditionalWeb Browsers. Technical
Report. Georgia Institute of Technology.

[3] Chaitrali Amrutkar, Kapil Singh, Arunabh Verma, and Patrick Traynor. 2012.
VulnerableMe: Measuring systemic weaknesses in mobile browser security. In
International Conference on Information Systems Security. Springer, 16–34.

[4] Chaitrali Amrutkar, Patrick Traynor, and Paul C Van Oorschot. 2012. Measur-
ing SSL indicators on mobile browsers: Extended life, or end of the road?. In
International Conference on Information Security. Springer, 86–103.

[5] Chaitrali Amrutkar, Patrick Traynor, and Paul C VanOorschot. 2015. An empirical
evaluation of security indicators in mobile Web browsers. IEEE Transactions on
Mobile Computing 14, 5 (2015), 889–903.

[6] Chaitrali Vijay Amrutkar. 2014. Towards secure web browsing on mobile devices.
Ph.D. Dissertation. Georgia Institute of Technology.

[7] Zineb Ait Bahajji and Gary Illyes. 2014. Google Webmaster Blog: HTTPS
as a ranking signal. https://webmasters.googleblog.com/2014/08/
https-as-ranking-signal.html. (2014).

[8] Bugzilla@Mozilla. 2010. URL Display of Title instead of the URL Enables Phishing
Attacks via URL Spoofing. https://bugzilla.mozilla.org/show_bug.cgi?
id=605206. (2010).

[9] Ping Chen, Nick Nikiforakis, Christophe Huygens, and Lieven Desmet. 2013. A
Dangerous Mix: Large-scale analysis of mixed-content websites. In Proceedings
of the 16th Information Security Conference (ISC).

[10] Erika Chin and David Wagner. 2013. Bifocals: Analyzing webview vulnerabili-
ties in android applications. In International Workshop on Information Security
Applications. Springer, 138–159.

[11] CVE 2014. CVE-2014-6041 : The Android WebView in Android before 4.4 allows
remote attackers to bypass the Same Origin Policy via a crafted attributes. http:
//www.cvedetails.com/cve/CVE-2014-6041/. (2014).

[12] Peter Dolanjski and Tanvi Vyas. 2017. Mozilla Security Blog: Communicating the
Dangers of Non-Secure HTTP. https://blog.mozilla.org/security/2017/
01/20/communicating-the-dangers-of-non-secure-http/. (2017).

[13] Tesseract Open Source OCR Engine. 2017. Google. https://github.com/
tesseract-ocr/tesseract. (2017).

[14] Adrienne Porter Felt, Robert W Reeder, Alex Ainslie, Helen Harris, Max Walker,
Christopher Thompson, Mustafa Embre Acer, Elisabeth Morant, and Sunny Con-
solvo. 2016. Rethinking connection security indicators. In Twelfth Symposium on
Usable Privacy and Security (SOUPS).

[15] Adrienne Porter Felt and David Wagner. 2011. Phishing on mobile devices. In
Proceedings of the Web 2.0 Security and Privacy Workshop.

[16] Anthony Y Fu, Xiaotie Deng, LiuWenyin, and Greg Little. 2006. The methodology
and an application to fight against unicode attacks. In Proceedings of the second
symposium on Usable privacy and security. ACM, 91–101.

[17] Google Play store. 2017. CM Browser - Adblock Download. https://play.
google.com/store/apps/details?id=com.ksmobile.cb. (2017).

[18] Google Play store. 2017. Dolphin - Best Web Browser. https://play.google.
com/store/apps/details?id=mobi.mgeek.TunnyBrowser. (2017).

[19] Google Play store. 2017. Google Play store: Fastest Mini Browser. https://
play.google.com/store/apps/details?id=com.mmbox.browser. (2017).

[20] Google Play store. 2017. Google Play store: Ghostery Privacy Browser.
https://play.google.com/store/apps/details?id=com.ghostery.
android.ghostery. (2017).

[21] Google Play store. 2017. Opera Mini - fast web browser. https://play.google.
com/store/apps/details?id=com.opera.mini.native. (2017).

[22] Google Play store. 2017. UC Browser - Fast Download. https://play.google.
com/store/apps/details?id=com.UCMobile.intl. (2017).

[23] Charlie Hothersall-Thomas, Sergio Maffeis, and Chris Novakovic. 2015. Browser-
Audit: Automated Testing of Browser Security Features. In Proceedings of the
International Symposium on Software Testing and Analysis (ISSTA).

[24] Jason Kersey. 2013. Chrome for Android Update.
http://googlechromereleases.blogspot.com/2013/11/
chrome-for-android-update.html. (2013).

[25] Let’s Encrypt - Free SSL/TLS Certificates. 2017. https://letsencrypt.org/.
(2017).

[26] Tongbo Luo, Hao Hao, Wenliang Du, Yifei Wang, and Heng Yin. 2011. Attacks
on WebView in the Android system. In Proceedings of the 27th Annual Computer
Security Applications Conference. ACM, 343–352.

[27] Tongbo Luo, Xing Jin, Ajai Ananthanarayanan, and Wenliang Du. 2013. Touch-
jacking attacks on web in android, ios, and windows phone. In Foundations and
Practice of Security. Springer, 227–243.

https://adguard.com/en/welcome.html
https://adguard.com/en/welcome.html
https://webmasters.googleblog.com/2014/08/https-as-ranking-signal.html
https://webmasters.googleblog.com/2014/08/https-as-ranking-signal.html
https://bugzilla.mozilla.org/show_bug.cgi?id=605206
https://bugzilla.mozilla.org/show_bug.cgi?id=605206
http://www.cvedetails.com/cve/CVE-2014-6041/
http://www.cvedetails.com/cve/CVE-2014-6041/
https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/
https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/
https://github.com/tesseract-ocr/tesseract
https://github.com/tesseract-ocr/tesseract
https://play.google.com/store/apps/details?id=com.ksmobile.cb
https://play.google.com/store/apps/details?id=com.ksmobile.cb
https://play.google.com/store/apps/details?id=mobi.mgeek.TunnyBrowser
https://play.google.com/store/apps/details?id=mobi.mgeek.TunnyBrowser
https://play.google.com/store/apps/details?id=com.mmbox.browser
https://play.google.com/store/apps/details?id=com.mmbox.browser
https://play.google.com/store/apps/details?id=com.ghostery.android.ghostery
https://play.google.com/store/apps/details?id=com.ghostery.android.ghostery
https://play.google.com/store/apps/details?id=com.opera.mini.native
https://play.google.com/store/apps/details?id=com.opera.mini.native
https://play.google.com/store/apps/details?id=com.UCMobile.intl
https://play.google.com/store/apps/details?id=com.UCMobile.intl
http://googlechromereleases.blogspot.com/2013/11/chrome-for-android-update.html
http://googlechromereleases.blogspot.com/2013/11/chrome-for-android-update.html
https://letsencrypt.org/

[28] Moxie Marlinspike. 2009. More tricks for defeating SSL in practice. Black Hat
USA (2009).

[29] Matthias Neugschwandtner, Martina Lindorfer, and Christian Platzer. 2013. A
View to a Kill: WebView Exploitation.. In LEET.

[30] Yuan Niu, Francis Hsu, and Hao Chen. 2008. iPhish: Phishing Vulnerabilities on
Consumer Electronics. In Proceedings of the Usability, Psychology, and Security
Workshop (UPSEC).

[31] Google Cloud Platform. 2017. Cloud Vision API Documentation. https://cloud.
google.com/vision/docs/. (2017).

[32] Gustav Rydstedt, Baptiste Gourdin, Elie Bursztein, and Dan Boneh. 2010. Framing
attacks on smart phones and dumb routers: tap-jacking and geo-localization
attacks. In Proceedings of the 4th USENIX Workshop On Offensive technologies
(WOOT). USENIX Association, 1–8.

[33] Emily Schechter. 2016. Google Security Blog: Moving towards a
more secure web. https://security.googleblog.com/2016/09/
moving-towards-more-secure-web.html. (2016).

[34] Selenium. 2017. SeleniumWebdriver. http://www.seleniumhq.org/projects/
webdriver/. (2017).

[35] Kapil Singh, Alexander Moshchuk, Helen J Wang, and Wenke Lee. 2010. On the
incoherencies in web browser access control policies. In Security and Privacy (SP),
2010 IEEE Symposium on. IEEE, 463–478.

[36] Suphannee Sivakorn, Jason Polakis, and Angelos D. Keromytis. 2016. The Cracked
Cookie Jar: HTTP Cookie Hijacking and the Exposure of Private Information. In
In Proceedings of the 37th IEEE Symposium on Security and Privacy (S&P ’16).

[37] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri, and Lorrie Faith
Cranor. 2009. Crying Wolf: An Empirical Study of SSL Warning Effectiveness..
In USENIX security symposium. 399–416.

[38] W3C. 2010. Web Security Context: User Interface Guidelines. https://www.w3.
org/TR/wsc-ui/. (2010).

[39] Xiaofeng Zheng, Jian Jiang, Jinjin Liang, Haixin Duan, Shuo Chen, Tao Wan, and
Nicholas Weaver. 2015. Cookies Lack Integrity: Real-World Implications. In 24th
USENIX Security Symposium (USENIX Security 15).

[40] Yuchen Zhou and David Evans. 2010. Why aren’t HTTP-only cookies more
widely deployed. Proceedings of 4th Web 2 (2010).

https://cloud.google.com/vision/docs/
https://cloud.google.com/vision/docs/
https://security.googleblog.com/2016/09/moving-towards-more-secure-web.html
https://security.googleblog.com/2016/09/moving-towards-more-secure-web.html
http://www.seleniumhq.org/projects/webdriver/
http://www.seleniumhq.org/projects/webdriver/
https://www.w3.org/TR/wsc-ui/
https://www.w3.org/TR/wsc-ui/

	Abstract
	1 Introduction
	2 Attack Building Blocks
	3 Data collection
	3.1 Mobile Browsers Dataset
	3.2 Metadata Extraction

	4 Testing Framework and Methodology
	4.1 Hindsight Framework Architecture
	4.2 Building a Browser-Agnostic Framework
	4.3 Verifying Hindsight Results

	5 Evaluation
	5.1 General Findings
	5.2 Longitudinal Analysis
	5.3 Popularity versus Vulnerability
	5.4 HTTPS
	5.5 Patterns of Vulnerability

	6 Discussion
	7 Related Work
	8 Conclusion
	References

