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ABSTRACT
To better understand the demographics of their visitors and their
paths through their websites, the vast majority of modern web-
site owners make use of third-party analytics platforms, such as,
Google Analytics and ClickTale. Given that all the clients of a third-
party analytics platform report to the same server, the tracking
requests need to contain identi�ers that allow the analytics server
to di�erentiate between their clients.

In this paper, we analyze the analytics identi�ers utilized by eigh-
teen di�erent third-party analytics platforms and show that these
identi�ers enable the clustering of seemingly unrelated websites
as part of a common third-party analytics account (i.e. websites
whose analytics are managed by a single person or team). We focus
our attention on malicious websites that also utilize third-party
web analytics and show that threat analysts can utilize web ana-
lytics to both discover previously unknown malicious pages in a
threat-agnostic fashion, as well as to cluster malicious websites into
campaigns. We build a system for automatically identifying, isolat-
ing, and querying analytics identi�ers from malicious pages and
use it to discover an additional 11K live domains that use analytics
associated with malicious pages. We show how our system can be
used to improve the coverage of existing blacklists, discover pre-
viously unknown phishing campaigns, identify malicious binaries
and Android apps, and even aid in attribution of malicious domains
with protected WHOIS information.
ACM Reference Format:
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1 INTRODUCTION
Web analytics is a necessary tool for modern websites to better
understand their users and how they interact with their content.
Most web developers make use of third-party analytics platforms,
such as, Google Analytics, Yandex Metrica, and ClickTale, both
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because of their ease of adoption as well as the typical presence of
no-cost/“freemium” plans. For instance, according to recent statis-
tics from BuiltWith [2], 77.8% of the web’s 1 million most popular
sites utilize Google Analytics.

Given that all the clients of a third-party analytics platform re-
port to the same centralized backend, the tracking requests emitted
from web browsers need to contain identi�ers that allow the analyt-
ics server to di�erentiate between their clients. A single identi�er
(referred to as ID throughout this paper) is often shared across
di�erent websites that belong to the same account, or to the same
project in the analytics dashboard, thus e�ectively becoming a
method of grouping websites together, even among domains that
otherwise seem unrelated. As a result, there exist services for re-
verse lookups of Google Analytics IDs (e.g., SpyOnWeb [15] and
SameID [13]) which are used, for example, by journalists to reveal
hidden connections between websites [18].

In this paper, we analyze the analytics identi�ers utilized by eigh-
teen di�erent third-party analytics platforms and show that these
identi�ers allow for the clustering of seemingly unrelated websites
as part of a common third-party analytics account (i.e. websites
whose analytics are managed by a single person or team). We use
this observation to perform the �rst large-scale analysis of analyt-
ics utilized by malicious content and quantify the extent to which
matching analytics IDs allows for the identi�cation of new mali-
cious content, the clustering of malicious content into campaigns,
and even the deanonymization of malicious actors. To that extent,
we design and develop a reliable pipeline for parsing sources of ma-
licious content, identifying and extracting IDs associated with the
studied analytics services, and searching for new malicious content
that shares the extracted IDs in a threat-agnostic fashion, i.e., being
able to identify malicious content without tailored, abuse-speci�c
detection methods.

We use our system to crawl 145K malicious URLs provided by
VirusTotal on a daily basis for a period of two weeks and identify a
total of 9,395 unique analytics IDs associated with malicious pages.
Our system was able to, on average, discover 1,442 malicious ana-
lytics IDs per day, most of which belonging to Google Analytics.
Moreover, we extracted 872 analytics identi�ers from a two-year
corpus of technical support scams and other social-engineering
attacks, allowing us to calculate the lifetime of some scam cam-
paigns to more than two years. By searching for domains and URLs
reusing the extracted IDs in the wild, we were able to discover 11K
additional websites and showed how the sharing of analytic IDs
can allow for the deanonymization of owners of domains, even
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http://www.google -analytics.com/__utm.gif?utmwv =5.7.0& utms =3& utmn
=318899286& utmhn=www.fourfilerfis.com&utme =8( Nombre %20 landing*
Hash)9(flash %20 player %20 -%20grey -fp*dnqO3b3R)&utmcs=UTF -8& utmsr
=1440 x900&utmvp =1433 x372&utmsc =24-bit &...& utmac=UA-41451094...

Figure 1: Example of a scampage that calls GoogleAnalytics.

when WHOIS privacy solutions are utilized. Next, we show how
our analytics-ID-matching technique applies beyond regular web-
sites (to malicious mobile apps, suspicious extensions, and malware
binaries) and how we were able to utilize it to discover 13 phish-
ing campaigns against popular websites. Finally, we explain why
evading our detection methods will not be trivial for attackers as
long as they �nd value in analytics, and we describe how analytics
companies can utilize their privileged positions to assist in discov-
ering malicious content and aid law-enforcement identify the real
culprits behind attacks.

2 BACKGROUND ONWEB ANALYTICS
For virtually all types of web analytics, web developers are asked by
the analytics service to embed a piece of JavaScript code throughout
their website. This JavaScript code includes logic for tracking user
visits and at least one identi�er (referred to as ID throughout the
paper) that is used by the analytics platform to later di�erentiate
between tracking requests of their clients. When visitors load one of
the corresponding pages inside their browsers, the analytics script
issues requests to the analytics backendwhich collects tracking data
about the current visitor. The analytics services then aggregate the
data and make them available through a convenient web dashboard
which is made available to website owners.

At this point, it is important to note that while the analytics
IDs embedded in websites need to be per-analytics-client unique,
they do not need to be per-domain unique. That is, website owners
can manage multiple websites as part of a single project where,
e.g., all the analytics requests for example.com, example.net, and
example.org are aggregated together. In this case, the JavaScript
code embedded in all three websites would be utilizing the same
analytics ID. This allows a third-party observer to infer that these
three domains are somehow related (i.e. managed by the same
person/team) even when the ID-sharing domains are lexically dif-
ferent, are hosted on di�erent servers, and utilize WHOIS privacy
solutions. Through our experiments, we have found that this type
of aggregation is very common across both benign and malicious
website owners and can therefore be used for clustering seemingly-
unrelated websites together into campaigns.

To gauge howwell this ID-sharing observation generalizes across
di�erent analytics services, we analyze 18 popular services o�ering
general web analytics (listed in Table 1 according to their popular-
ity, as reported by BuiltWith [2]). One can notice that the majority

Table 1: Comparison of popular web analytics

Web analytics Price Leaked ID Example ID

Google Analytics Free Account UA-22417551-1
Google Tag Manager Free Project GTM-N7R3KH
New Relic Insight Paid Account 9a40653a95
Yandex Metrica Free Project 42880164

Quantcast Free Account p-b6_rD1Ba7gEIM
StatCounter Free Project 7040321/0/9a83071e
Optimizely Paid Project 5328963582
CrazyEgg Paid Account 0023/6581
Clicky Free Project 101071552

Mixpanel Free Account 481d51295e...f5547
Segment Free Project 6q5KVhqz...6DONr
Mouse�ow Free Project �5128b8-7...caba8
Chartbeat Paid Account 50874

Heap Analytics Free Project 429571327
Kissmetrics Paid Project e4756f9bee...c2dc3
ClickTale Paid Account 6ea876d3-3...b4f00
Gauges Paid Project 58caae4f4b...1c18a

W3Counter Free Project 63908

of services provide an option of no-cost subscription, which makes
them even more attractive for website owners. Upon signup to any
web analytics service, a web developer gets an ability to set up a
project, which may or may not require to specify targeted domains.
We want to emphasize that even if speci�c domains are speci�ed
in the analytics dashboard, tra�c statistics are collected across
di�erent origins, and thus the analytics script can be distributed
across di�erent websites at the discretion of the web developer.
In this case, the analytics request from each website contains the
same project ID, which can be used to associate them. Moreover,
even if the website owner creates a separate analytics project per
each monitored domain, there are services that still require a sepa-
rate account identi�er, such as, Google Analytics. Speci�cally, each
Google Analytics account can create up to 100 identi�ers of the
following format UA � XX ...XX � YY , where UA � XX ...XX is
the constant account ID. Similarly, tracking requests to New Relic
Insight include a “global license key” which is common across all
websites managed by a single account.

The exact format of each service’s analytics ID in�uences the
di�culty of correctly identifying other websites that share a given
ID. For example, as shown in Table 1, Yandex Metrica uses a highly
ambiguous format consisting of a short string of digits. In order
to �nd other websites using the same ID, we need to crawl as
many websites as possible and either dynamically locate requests to
Yandex backend servers as they are occurring, or statically attempt
to locate Yandex-related JavaScript code which may be further
complicated through the use of minimization and obfuscation.

Contrastingly, ClickTale utilizes longer strings (e.g., “6ea876 d3-
3...f00”) while StatCounter uses a combination of the project ID and
additional identi�er (e.g., “/7040321/0/9a83071e/1/”). In both cases,
the resulting IDs are more likely to be globally unique, and thus
can be searched with generic search engines that index the source
code of web pages (such as, PublicWWW [11] and NerdyData [5]).
Furthermore, the speci�c format of some analytics providers, such
as, Google Analytics and Google Tag Manager, provide us with the
ability to not only search for a speci�c ID, but to retrieve all the

2

example.com
example.net
example.org


identi�ers while statically analyzing a page’s source code (e.g., all
IDs of the format GTM � XXXXXX ).

Finally, it is worth pointing out that the aforementioned analytics
services are not necessarily limited to websites. Browser extensions
can straightforwardly utilize web analytics by including the appro-
priate JavaScript code in their background pages [33] while Android
APKs can include analytics SDKs that emit the appropriate HTTP
requests that are recognized by the analytics backend servers. In
addition to Google Analytics and Google Tag Manager which are
available for both websites as well as Android apps, we analyzed
the following mobile-speci�c, analytics services: FireBase, App�yer,
App Metrica, Flurry, Umeng, and Adjust. Google Analytics, Fire-
Base, and App�yer leak a global analytics account ID with each
tracking request, whereas the remaining register unique application
IDs for each separate app.

3 DATA COLLECTION AND ANALYSIS
In this section, we describe our pipeline for mining analytics IDs
from di�erent sources of malicious URLs, browser extensions, and
mobile applications.

3.1 Analytics IDs from malicious websites
For our project we utilize two sources ofmalicious URLs: i) daily lists
of malicious URLs from VirusTotal and, ii) URLs and HTML code of
typosquatting domains and the destination URLs of ad-based URL
shorteners, kindly provided to us by Miramirkhani et al. [28]. Given
these two sources, extracting analytics IDs from malicious websites
appears, at �rst, straightforward. One would need to merely visit
each URL, identify the presence of one or more analytics providers,
and isolate the utilized analytics IDs. Unfortunately, the following
reasons complicate this seemingly straightforward process:
• When visiting a malicious URL some time after it was �rst re-
ported, the resulting page may now be operated by a domain
parking company with its own benign analytics.
• When trusting third-party verdicts about the maliciousness of a
given URL, it is unclear which part of the page was malicious, i.e.,
the main page versus a particular iframe embedded in the page.
Malicious pages may include benign content and vice versa, both
of which may be utilizing their own web analytics.
To account for these complications during the VirusTotal crawl,

we deploy a set of �lters, as shown in Figure 2. First, after crawling
URLs from VirusTotal, we extract the pairs of valid analytics IDs
and actual domain where they were found (i.e. the domain of the
main page or that of an iframe).We then check whether that domain
was malicious according to VirusTotal and discard those that are
reported as benign, allowing us to remove many instances which
would otherwise be false positives. Second, we �lter out whitelisted
domains and known benign analytics IDs from websites in the
Alexa top 100K.

During pilot experiments, we discovered that domains resulting
from these two �ltering steps still contained a large number of false
positives. These false positives were mainly due to a few common
analytics IDs that were present in large numbers of pages that are
part of the lifecycle of a malicious URL but are not malicious in-
and-of themselves. For example, the error pages shown by hosting
providers when they have suspended a user’s account (a common

reaction to a malicious URL) may all share the same analytics ID.
Thus, if we do not exclude these pages, we would be marking all
domains that were suspended/deleted as malicious. To account for
such cases, we utilize PublicWWW and SpyOnWeb (two search
engines for HTML code) to �nd other domains with pages that
utilize the same analytics ID and ignore a given ID if it is used by
more pages than an empirically discovered threshold (500 domains
according to our experiments). Our rationale for this threshold
is that, if we discover more than 500 unpopular domains all of
which share the same analytics ID and some of which are marked
as malicious, we consider it more plausible that these are related to
a known benign service rather that they are managed by a single
dedicated attacker.

Contrastingly, because Miramirkhani et al. [28] provide us with
bothHTML code as well as URLs, we can develop our own heuristics
for identifying a malicious page and if those heuristics match a page
that contains an analytics ID, we can immediately isolate and extract
that ID. Given the nature of their project and data sources, we search
through the HTML and JS corpus for keywords associated with
technical support scams, toll-free phone numbers, and messages
indicating that we need to download new software (e.g. missing
codecs), or update our existing one (e.g. update Flash, Chrome, or
Java).

To faithfully mimic a user who lands on a malicious domain, our
crawler is based on the headless Chrome Browser. Our crawler is
capable of intercepting JavaScript alerts, simulate clicks, and extract
analytics identi�ers from both network tra�c, as well as the page’s
HTML code and browser DOM. By running our crawler on multiple
machines, we are able to crawl and analyze over 10 million domains
per day. All network tra�c and extracted analytics IDs are stored
in database for further analysis.

The statistics described in the remainder of the paper, are based
on the following datasets:
• Three daily sets of malicious URLs reported by VirusTotal (VT)
in August 2017 and fourteen consecutive VT URL dumps from
September 2017. Each set consists on average of 145K unique
URLs belonging to 24.3K unique TLD+1 domains. For example,
just for the September, we crawled more than two million URLs
on 340,873 unique domains.
• The domains from Miramirkhani et al. [28] include almost two
years of crawling 10,000 typosquatting domains daily from Sep-
tember, 2015, and a set of 3,000 shortened URLs from top ad-based
URL shorteners starting from April, 2016.
Finally, we make use of a commercial URL �ltering service be-

longing to Palo Alto Networks, a network and enterprise security
company, which provides its customers with URL categories includ-
ing: malware, phishing, adult, drugs, and weapons. Any given URL
that is visited by a client of their �rewall solution and is not part of
their list, is placed into a separate UNKNOWN_URLs database. We
make use of this database to evaluate the increased coverage that
our threat-agnostic, analytics-ID-matching technique o�ers.

3.2 Analytics IDs from malware samples
Next to webpages utilizing analytics IDs, in this paper, we con-
sider the following additional sources of analytics IDs, involved in
suspicious/malicious campaigns.
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  Analytics ID extractor:
  - from HTTP traffic
  - from DOM variables
  - from HTML dumps

Crawler:
URLs reported by 
other scanners
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malicious URLs

<domain, ID>

<content, ID>

WhitelistingChecking with 
VirusTotal

Removing 
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Extension

Fake
Reward

Fake Tech 
Support ...

  Extended engine:
  - intercepted JS alerts
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  - extended timeouts

Malicious 
Analytics IDs

Figure 2: High-level view of our pipeline for mining analytics IDs from known malicious URLs (e.g., reported by third-party
scanners) and potentiallymaliciousURLs (e.g., typosquatting domains). Given these two sources, the systemapplies a sequence
of domain �lters and a set of content-based scam detection heuristics.

Figure 3: Example of a malicious browser extension in-
stalled by more than 63K users.

Malicious browser extensions.While crawling our lists of URLs
in order to extract their analytics IDs, we noticed that many re-
sulting pages were trying to trick users into installing unwanted
browser extensions. Figure 3 shows an example of such a browser
extension which claims to make a user’s searches more private.
Upon installation, these types of extensions typically request the
permission to track a user’s browsing history across tabs, to modify
visited websites, and to access their cookies. Our system automati-
cally downloads the o�ered extensions and unpacks them, in search
of analytics-IDs utilized by the extensions’ authors. Skipping over
extensions with more than 4 million active users (we experimen-
tally chose that threshold to reduce false positives from web pages
that redirected us to popular benign extensions) we were able to
identify 315 extension URLs, 255 were available for download (we
assume that the remaining ones were already detected as being
abusive and removed from the Chrome store).
Malicious Android apps. For our study on mobile analytics we
use a dataset of 796,304 Android APKs, which was kindly provided
to us by Palo Alto Networks. These APKs are collected from a
variety of sources (customer submissions, VirusTotal, Google Play
Store) and 477,829 of them have received a “strong” malware verdict
from the proprietary detection system developed by that company.
These 796K APKs were collected from February till September 2017.

Listing 1: Google Analytics in AndroidManifest.xml

<resources >
<string name=�ga_trackingId� translatable=�false�>

${YOUR_TRACKING_ID }</string >
</resources >

Due to the large number of APKs and the potential to miss the
analytics IDs from malfunctioning and evasive APKs, we identify
the analytics IDs by inspecting the unpacked APKs. We found that,
because most analytics platforms encourage developers to embed
the analytics IDs in the metadata of their application, discovering
these IDs from con�guration �les, like AndroidManifest.xml, was
a straightforward process. Listing 1 shows an example of how an
app developer should include their analytics IDs when utilizing
Google Analytics.
Other malware binaries. The �nal dataset originating from the
Palo Alto Networks is a list of malware samples which, among
others, send HTTP requests to Google Analytics. By analyzing
this list and their requests, we discovered that 173,236 malware
samples contained 4,162 Google Analytics IDs. To ensure that we
�lter out analytics IDs that are not necessarily malicious (e.g. a
malware author cloning a benign application which includes a
benign analytics ID), we focus on 2,912 IDs that are almost never
seen in benign binary samples, i.e., found less than ten times, in a
pool of hundreds of thousands of benign-labeled binaries.

4 ANALYSIS OF RESULTS
In this section, we describe our analytics-IDs �ndings for each
di�erent source of malicious content.

4.1 Analytics from malicious web pages
Mining malicious analytics IDs. After crawling three daily sets
of malicious URLs from VirusTotal in July-August 2017, and repeat-
ing the experiment for two weeks in the end of September 2017 we
were able to extract 9,395 analytics IDs associated with malicious
content. Table 2 shows the distribution of these IDs across popular
web analytics. First, we see that Google Analytics is as popular
with attackers as it is with legitimate web developers (85% of all
identi�ers belonged to Google Analytics). Second, we observe that
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Table 2: Mining malicious analytics IDs

Web analytics IDs Domains Potential Veri�ed Unseen

Google Analytics 7,945 8,182 27,472 10,901 8,132
Yandex 816 912 - 1,364 971
Google Tag Manager 278 289 1,598 683 564
StatCounter 155 144 - 22 20
Clicky 58 68 - 113 83
New Relic Insights 55 107 - 803 779
Quantcast 46 56 336 113 101
CrazyEgg 13 17 - 0 0
Optimizely 11 12 - 4 2
MouseFlow 9 9 - 4 1
Mixpanel 5 5 - 272 272
Segment 2 2 - 0 0
ClickTale 1 1 - 1 0
Heap Analytics 1 1 - 0 0

Overall 9,395 9,226 - 14,267 10,921

for a number of these services, there are more domains than unique
IDs (e.g. 8,182 domains vs. 7,945 IDs for Google Analytics) which
immediately points to the reuse of IDs across domains.

Figure 4 shows the detection rate of malicious analytics for each
day of our experiment. On average, we were able to discover 1,442
total IDs per day, 553 of which were not previously discovered
(note that the �gure is not a CDF since each day, a fraction of
our previously discovered IDs, do not reappear in new crawls). As
before, the recurrent reuse of analytics means that attackers are
deploying the same analytics code, across multiple malicious pages.

In contrast with the VirusTotal source, the data provided to us
by Miramirkhani et al. [28] is by de�nition skewed towards social-
engineering attacks, particularly of the fake technical support kind.
From that data, we were able to extract 872 unique Google Analytics
IDs across 3,185 domain names. Most of these IDs (89.2%) were
located on technical support scams while the remaining ones were
on other types of scam pages, such as, fake surveys and fake plugin
updates.

Interestingly, while 51.8% of these analytics IDs were only ob-
served for a single day, there were other IDs that belonged to long-
running campaigns (overall, average lifetime was 46 days). For
example, using a common Google Analytics ID, we observed a fake-
survey campaign that was live for at least 764 days (UA-11040674
seen on 4 captured domains) and a separate fake Flash Player up-
date / fake technical support campaign that was live for at least
730 days (UA-67441257 seen on 44 captured domains). The fact that
these campaigns lasted for over two years, suggests not only that
these attackers are able to avoid detection for prolonged period of
time but also that our proposed method of utilizing analytics IDs to
discover campaigns of seemingly unrelated URLs is currently not
utilized.
Discovering malicious web campaigns. Having a set of analyt-
ics IDs associated with malicious websites allows us to search for
the same IDs in the wild and discover previously-unreported mali-
cious websites. Using two code search engines (PublicWWW and
SpyOnWeb), we were able to �nd other known domains for more
than 63% of the 9,395 malicious analytics IDs discovered from our
VT crawls. Table 2 shows how many potentially-malicious domains
we discovered, and how many of them were veri�ed with our own
crawlers to still have the matched analytics IDs. We restrict the
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Figure 4: Discovery rate of malicious analytics IDs during
the daily crawl of VirusTotal feed.
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Figure 5: Discovery rate of malicious Google Analytics do-
mains during the daily crawl of VirusTotal feed.

potential results to analytics providers with su�ciently distinct
ID formats (described in Section 2) to ensure that we are really
discovering analytics-related identi�ers.

Overall, we were able to discover 14,267 live websites containing
malicious analytic IDs, 76.5% of which were new, previously unseen
domains, i.e., not part of our VT-sourced URLs. As Table 2 shows, for
many analytics providers, we are able to at least double the number
of known live malicious domains from our VT seeds (e.g, we discov-
ered another 8,132 Google analytics domains reusing analytics IDs
from the original 8,182 domains), and presumably can at least triple
the number if we include potentially or formerly malicious websites
(e.g. 27K Google analytics domains for the original 8.1K domains).
Moreover, by querying VT about our newly-discovered domains,
we �nd that the vast majority of new websites have successfully
avoided detection, i.e., only 18.9% of the newly discovered websites
are marked as malicious. We argue that this shows the power of
this technique since it can associate seemingly benign websites to
the same adversaries operating the more explicitly malicious ones.

Figure 5 shows the daily rate on the number of newly discovered
domains reusing malicious Google Analytics IDs. We observe the
same peak on 10/02 as we did in the daily number of VT-sourced
malicious IDs (Figure 4). Using this approach one can expect to,
on average, be able to associate 364 new, previously unseen, ma-
licious domains per day, which share analytics IDs with existing
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Figure 6: Example of “unknown” website detected via UA-
81239183. Each click navigates to a di�erent scam page.

Table 3: Intersection with “unknown” websites

Web analytics # IDs # Domains

Google Analytics 122 774
Yandex 16 671

Google Tag Manager 7 108
New Reli cInsights 5 26

Clicky 4 3
Optimizely 3 79
CrazyEgg 2 28
MouseFlow 1 72
Mixpanel 1 25
Quantcast 1 1

Overall 162 1785

malicious domains (considering results starting from 09/27). Sim-
ilarly, we were able to identify 2,926 other domains (with 2,821
being newly discovered) for 33.6% of the 872 scam-related Google
Analytics IDs. Out of those, 836 were still active at the time of this
writing with 95% of them being �agged as malicious by VirusTo-
tal scanners. Many examples like error01234567890microsoft.xyz
(combosquatting domain [26] utilized for technical support scams)
or search-privacy.online (potentially unwanted programs) were
discovered to be threats by matching Google Analytics.
Domain and Campaign Forensics. The ability to, given a list of
malicious analytics IDs, identify other websites sharing these IDs,
allows for a number of powerful forensic applications including: i)
estimating the size of malicious campaigns, ii) identifying common
attackers behind diverse attacks, and iii) deanonymizing malicious
actors. In terms of campaign-size, using the VT-sourced URLs, we
were able to �nd an average campaign size of 7.6 domains, with
the largest campaign including 480 domains (note that this is a
lower bound on the largest size as we decided to cut-o� analytics
IDs with more than 500 discovered domains as those may include
false-positives). Similarly, for the scam-related dataset, the average
campaign size was 3.6 with the largest campaign including 293
domains. By analyzing some of the scam-related data we were able
to identify one New Relic Analytics ID (“bfd2c38d50”) which was
associated with both technical support scams as well as phishing
domains. This �nding suggests either that one attacker/team is
responsible for awide-range of attacks, or that they have outsourced
their analytics to the same entity. In both cases, this identi�ed
“link” can be powerful for both expedient take-downs as well as for
identifying the culprits by law-enforcement.

Table 4: Querying benign and malicious samples

Google Analytics # Benign # Malware

Top IDs from VirusTotal URLs
UA-43126514 137 23,333
UA-69254683 3 605
UA-74694740 22 541
UA-260627 52 520
UA-63404602 0 204

Top IDs from scam pages
UA-56634126 19 8,609
UA-41451094 16 892
UA-72722497 272 37
UA-82355406 166 26
UA-61108112 0 21

Finally, we were able to deanonymize 59 malicious actors be-
hind VirusTotal URLs by �nding public WHOIS records for other
domains sharing the same analytics IDs. This means that as long as
an, otherwise careful attacker who uses WHOIS privacy and fake
registration details, links at least one onymous domain to the same
analytics account, this can be used to link all of the anonymously-
registered domains back to him. For example, Google Analytics ID
UA-58907283 was originally found on veri�cation-login.com from
VirusTotal, and later was discovered on many phishing pages for
Instagram. The same analytics ID was present on ccg.gal which
had public WHOIS information, including the registrant’s email
address. Other examples include deanonymization of suspicious
online shops and web pages that distribute suspicious software.

Preventing unknown attacks. To further evaluate our threat-
agnostic, analytics-ID-matching, method of �nding and correlating
malicious websites, we extracted the analytics IDs from the UN-
KNOWN_URLs dataset (the list of URLs whose categorization was
unknown, as described in Section 3.1) and calculated the overlap
with our 9,395 malicious analytics IDs. Table 3 shows the number
of overlapping IDs across services and the number of previously
unlabeled domains that we could associate with known malicious
URLs. Figure 6 shows an example of “unknown” website matched
via UA-81239183, a Google Analytics from another website known
to be malicious by 5 reputable scanners from VirusTotal. Each click
on that website navigates the user to a di�erent scam page. Other ex-
amples include UA-89467400 found on over 63 “unknown” websites,
each leading to a di�erent scam (like harbiturk.xyz or digiz.xyz).

Intersection between web and malware. Knowing that more
than 173K malware samples send requests to Google Analytics
(Section 3.2), we decided to quantify the possible overlap between
the malware IDs and those of malicious websites. Speci�cally, we
calculated the intersection of 7,945 Google Analytics IDs collected
from our VirusTotal crawl and the 872 IDs found on scam pages,
with the ones present in the HTTP tra�c dumps of malicious APKs
andmalware binaries for di�erent OS. Overall, 29matched in former
case, and 35 in the later. Table 4 presents the most popular of the
common IDs.

For example, UA-43126514 is found in the tra�c of 23,333 mal-
ware samples. The most recent public sample on VirusTotal is
detected as “SoftPulse” by 53 out of 64 AV engines. This type of
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Table 5: Extensions found over intrusive install pages

# Users # Extensions Example

1-4MM 29 Search Manager (searchmgr.com)
100K-1MM 88 Movie Search (softorama.com)

10K-100K 91 betterMovies Search
(bettersearchtools.com)

0-10K 29 LastLogin Now (lastlog.in)
Unknown 78 Private Search Plus

malware exhibits dropper behavior (downloading additional mali-
cious software) and modifying registry entries. The same analytics
ID is found on many domains that deliver PUPs in the form of
video players (e.g. vidplayer.net and magnoplayer.com). Similarly,
UA-56634126 with 8,609 matches in tra�c from malware binaries
has been spotted on domains that distribute suspicious versions of
MacKeeper and other tools to repair Mac computers.

To better understand the overlap between benign and malicious
IDs, we randomly sampled a few of the 137 benign binaries with
the UA-43126514 ID and resubmitted them to VirusTotal. There, we
saw that most of them were now detected as malware by at least 15
AV engines. This result further strengthens the idea that matching
analytics IDs can reveal the true malicious nature of a seemingly
benign binary, before that binary is eventually detected as malware
by traditional AV engines.

4.2 Analytics from browser extensions
During our crawl of potential scam pages, we were able to collect
333 unique extension IDs. During the manual investigation of some
of these extensions, we noticed that some of them were benign,
highly popular extensions and therefore, as described in Section 3.2,
we �ltered out all extensions that were installed by more than 4
million users.

Our �ltered list contained 315 extensions served over 11,096
unique URLs hosted on 86 unique TLD+1 domains. Table 5 shows
a number of these extensions to allow the reader to develop an
intuition of the types of malicious extensions that are o�ered to
users. Across di�erent rankings, we observe extensions which are
detected as Potentially Unwanted Programs (PUPs) according to dif-
ferent AV sources (e.g., “safe4search” extension with 5,742 users [4]
and “BlpSearch” extensions with 332,610 users [1]). At the time of
our analysis we were able to download only 255 extensions, while
the remaining ones were no longer hosted on the Chrome Store.
Almost half of the collected suspicious extensions (43.5%) belong
to the “Search” category which allows them a reasonable cover for
requesting full permissions across all tabs and websites of a user’s
browser.

Out of 255 extensions that we could successfully download and
unpack, we found Google Analytics IDs on 120 extensions. Overall,
we detected 70 unique Google Analytics accounts which is already
evidence of ID sharing across extensions. For example, UA-98374100
is utilized in 14 di�erent Chrome extensions, with installation base
ranging from 10K to 162K active users, all developed by a developer
called “Better Search Tools.” In other cases, we can associate two
di�erent extension developers, such as in the case of UA-48154225
used by SearchAssist Tools from searchassist.net (4,221 users) and

Table 6: Analytics in malware Android APKs

Analytics # IDs # Hits Non Mal. Benign

App Metrica 12,622 13,445 32.9% 2.4%
Umeng 5,196 92,442 9.6% 0.3%

Google Analytics 551 379 22.7% 10.6%
FireBase 350 136 55.9% 32.4%
Localytics 9 1 100.0% 0.0%

Google Tag Manager 3 0 0.0% 0.0%
Flurry 2 1 0.0% 100.0%

AppsFlyer 1 1 0.0% 0.0%

Overall 18,734 100,379 9.7% 0.2%

similarly named extension from privacyassistant.net (4,636 users).
By attempting to revisit these extensions two weeks later after
our initial crawl, we noticed that both had been deleted from the
Chrome Store.

Using the two aforementioned code search engines (PublicWWW
and SpyOnWeb) we searched for these 70 extension-originating
analytics IDs and found 264 websites which utilized one of these IDs.
Among others, we found that UA-101669006 is used onmedianetnow.
com (associated with the developer of a speci�c suspicious exten-
sion) and on a set of domains that follow the nextlnkN.com format,
where N can be substituted with di�erent integers and redirect users
to a page requesting the installation of an extension. Our VirusTotal
feed exhibits similar results with an average of 54 unique exten-
sions discovered per day, half of which also belong to the “Search”
category.

4.3 Analytics from malicious Android apps
Overall, from 477,829 malicious APKs, we retrieved 18,734 unique
analytics identi�ers over 273,232 samples. For example, the Google
Analytics ID UA-77544562 is present on 8 malware APKs, labeled
as Android.Trojan.Dropper. Table 6 shows the distribution of
malware-related IDs across popular mobile analytics. Compared
to web analytics, Google Analytics is not the most popular choice
among malicious actors, taking the third place after by App Metrica
and Umeng.

Separately, we tested the detection possibilities enabled by our
threat-agnostic, analytics-matching scheme. For that, we collected
a testing sample of 330,117 newer APKs from late September 2017.
By matching analytics IDs found on previous malicious samples,
100,379 unique APKs were �agged as malware. Of them, 9,775 were
classi�ed by Palo Alto Networks’ systems as not malicious, however,
with 9,332 marked as gray, 289 as unknown, and only 154 received
the stronger “benign” verdict. This means that our system can
complement existing static/dynamic-analysis malware classi�ers
and assist in reducing potential false negatives (gray and unknown
samples) with low rate of newly introduced false positives (benign
samples). Table 6 shows the classi�cation results for all mobile
analytics. Among others, we �nd that Umeng analytics IDs helped
to detect the largest fraction of malicious Android apps.

An interesting case was the Google Analytics ID UA-2126908,
which was found among many malware APKs, and also on 12 web-
sites related to distribution of cracked mobile apps (like iphonecake.
com or directapk.net).
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Figure 7: Example of a phishing website that includes origi-
nal benign analytics ID from Airbnb.

Algorithm 1 Pseudocode for detecting phishing websites
tar�et_URLs  ���P��������T������(...)
tar�et_IDs  �����A��������ID�(tar�et_URLs )
for website in unknown do

f ound_IDs  �����A��������ID�(website )
for f ound_ID in f ound_IDs do

if f ound_ID in tar�et_IDs then
tar�et  �������(f ound_ID)
if not ���D���������TLD(website , tar�et ) then

continue
if not ���L����R���(website , tar�et ) then

continue
������S��������P�������(website )

5 DETECTING PHISHINGWEBSITES
In this section, we present separate results for phishing and how
analytics-ID matching can assist in the quick identi�cation of phish-
ing websites. While crawling URLs from our VirusTotal feeds, we
noticed many cases of phishing websites, such as the ones targeting
PayPal and LinkedIn users. We were surprised to discover that these
types of phishing websites often include the benign analytics IDs of
their victim websites and were therefore initially whitelisted by our
approach of �ltering out websites that utilize analytics IDs present
in popular Alexa websites. By investigating the rest of their source
code we came to the conclusion that the reason why these phishing
websites reuse the benign analytics IDs of their victims is because
the software that is used to clone the benign websites, does not
remove/substitute the analytics code. Popular phishing frameworks
like Social Engineering Toolkit (SET) [14] and Gophish [6] make
cloning websites a streamlined process yet they do not account for
analytics code.

We can therefore take advantage of this behavior to identify
phishing websites by matching the analytics IDs present in unla-
beledwebsites with those of popular websites that are often targeted
for phishing. Algorithm 1 shows the high-level steps involved in
our approach. We start by monitoring the daily lists of phishing
websites from the OpenPhish project [8] which allows us to iden-
tify the websites most commonly targeted. We amplify that list by
manually adding labels wherever they were missing and adding
social networking websites and booking websites to the lists of
potential victims. Given our �nal list of 270 potential targets, we
can automatically crawl the benign websites, extract the benign
analytics ID associated with each website, and then search for the
presence of these IDs in our sources of malicious URLs.

Next, we use additional �lters to automatically remove potential
false positives. For example, we select only cases with downgraded
TLDs (e.g., if the original target is a ".com" website, we match other
analytics-ID-sharing websites hosted on ".xyz", ".online", or on a raw

Table 7: Phishing campaigns detected during study

Target domain Web analytics # Domains

us.battle.net GA 12
www.airbnb.com GA, GTM 10
dailymail.co.uk GA 4
www.�ixster.com GA, Quantcast 4

serasaexperian.com.br GA, GTM 2
www.hotwire.com GTM, Optimizely 2
lonelyplanet.com GA, GTM 1
made-in-china.com GA 1

metrobankonline.co.uk GA, GTM 1
microsoft.com Optimizely 1
www.bnz.co.nz GA 1
www.irs.gov GA, New Relic 1

www.singtel.com GA 1

IP address). We also �lter out popular domains, i.e., ones that appear
in Alexa’s top 100K, as those that are sharing IDs are most likely
managed by the same entities. While false positives do remain,
these can be further �ltered-out by investigating the IP address
space and Autonomous System on which the suspicious website
is hosted. We argue, however, that each and every one of these
matches is suspicious enough to warrant the attention of a human
analyst.

After applying Algorithm 1 to the two-week collection of “un-
known” websites (UNKNOWN_URLs dataset, described in Sec-
tion 3.1), we could identify 13 phishing campaigns (e.g., Figure 7).
Table 7 lists the discovered phishing targets, associated web ana-
lytics, and the number of unique domains used to distribute the
phishing attacks. We recorded attacks on the Battle.net gaming
portal, Airbnb booking platform, email services, and bank accounts.
Usually the attackers used phishing replicas hosted on .xyz, .club,
.online domains or links including IP addresses. We also found
examples of .com and .ru TLDs to be gateways leading to the �nal
phishing pages, and, interestingly, a replica of the IRS website was
found on a .ru domain.

6 DISCUSSION
Summary of �ndings. Our results from the previous sections
clearly indicate that not only do malicious actors utilize analytics in
their attacks, but also that they reuse analytics IDs across websites
and even across platforms. We showed that using analytics IDs
extracted from known malicious websites allows analysts to dou-
ble the number of malicious websites, group seemingly unrelated
websites into campaigns, and deanonymize malicious actors hiding
behind WHOIS privacy proxies (Section 4.1). Using the same ID-
matching technique, we were able to identify hundreds of intrusive
browser extensions in the Chrome Store and cluster extensions
together, even when those claimed to be developed by di�erent de-
velopers (Section 4.2). Finally, we showed that the same techniques
apply to mobile malware (Section 4.3) and we uncovered a design
error of modern website-cloning tools that enables the detection
of phishing websites by the mere fact that they reuse the analytics
IDs of their victims (Section 5).
Analytics providers. Given our �ndings, we see many avenues
where existing web analytics providers can assist in the identi�ca-
tion of malicious websites and in the attribution of these websites
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back to unscrupulous individuals. The analytics providers that we
investigated in this paper are clearly in the position, given an an-
alytics ID, to identify all the websites associated with this ID and
potentially all other websites managed by the same account. We ar-
gue that this information, together with details about the owner of
a given analytics account, would be invaluable for law-enforcement
purposes. Moreover, analytics platforms can help website owners
in identifying active phishing websites, by warning them about the
existence of a new domain that is sharing an analytics ID with their
current domain and exhibits suspicious behavior.
Attacker adaptation. Even though attackers can, as a result of
this work, change their modus operandi for launching attacks and
utilizing web analytics, a change that is e�ective for evasion pur-
poses is harder than it might �rst appear. For example, even though
some attackers may start utilizing their own web analytics plat-
forms (backed by software such as OWA [7] and Piwik [10]), these
analytics backends will clearly only be utilized by malicious web-
sites and can therefore become signals of website maliciousness,
similar to Indicators of Compromise (IOCs) present in benign but
compromised websites [22]. Alternatively, if they identify lesser
known analytics platforms that o�er stronger privacy guarantees,
they would still be standing out, assuming that the vast majority
of benign websites keeps utilizing the popular analytics platforms
investigated in this paper. Even then, these analytics platforms
could still assist law-enforcement in identifying the operators of
malicious websites. Finally, even though website-cloning software
can be modi�ed so that it does not clone the victim analytics ID,
the ID present on the benign website can be bound to the visual
representation of that website and form a stronger website identity.
Phishing-discovery tools can use the absence of such an ID from
websites that are visually similar to popular phishing targets, as an
extra signal for identifying new phishing attacks.
Method generalization. In this work we report on the e�ective-
ness of associating analytics IDs for detection and discovery of
malicious websites and other malware. At the same time, we argue
that the developed method can be generalized to support other
artifacts of the modern web and mobile applications, which tend
to be shared and are likely to be used by malicious actors. Exam-
ples include payment addresses, a�liation identi�ers, generated
code snippets with license tokens, accounts for di�erent widgets
and services. As with analytics IDs, we expect similar challenges
in extracting the identi�ers, reducing false-positives, and evaluat-
ing the e�ectiveness in order to assign proper threat scores to the
discovered matches.

7 RELATEDWORK
The motivation to this work came from an article by Lawrence
Alexander about discovering hidden connections of websites via
Google Analytics IDs [17]. Speci�cally, Alexander used shared
Google Analytics IDs to reveal pro-Kremlin web campaigns [18]. At
the same time, there already exist services for reverse Google Ana-
lytics lookups, such as, SpyOnWeb [15], SameID [13], domainIQ [3],
and RiskIQ [12]. However, to the best of our knowledge, we are the
�rst to generalize the ID-sharing problem to many analytics ser-
vices and perform a large-scale analysis of the applicability of this

technique for identifying malicious websites, clustering malicious
content, and performing cross-platform attribution.

In general, the detection of malicious websites by inspecting
HTTP requests and responses is a known approach, e.g., Kosba et
al. [27] created ADAM, a system that evaluates network metadata
by rendering web pages in a sandbox. A cross-layer detection model
was developed by Xu et al. [35], considering both network and ap-
plication level features. Drew et al. [24] investigated the HTML
similarities of replicated criminal websites and Cova et al. [23]
analyzed the phishing websites created by “free” phishing kits.
Invernizzi et al. [25] proposed the idea of discovering more mali-
cious pages by leveraging the crawling infrastructure of third-party
search engines, which is conceptually similar to our method of dis-
covering other domains using the same analytics IDs. Catakoglu et
al. [22] showed that it is possible to use high-interaction honeypots
to automatically extract Indicators of Compromise that can be then
used to identify compromised websites in the wild. Even though
our method is focused on identifying malicious infrastructure, it
could also, in principle, be used to identify compromised websites
where attackers injected their own analytics IDs. Similarly, there has
been substantial work in the behavioral analysis and classi�cation
of HTTP-based malware [29, 31, 32], mainly focusing on the net-
work traces between malware installations and attacker-controlled
servers. In addition, Aresu et al. [19] research the clustering of An-
droid malware based on HTTP tra�c, and Zheng et al. [36] propose
a signature scheme for associating Android malware.

Most of the recent antiphishing research is based on crowd-
sourced solutions like PhishTank [9] and OpenPhish [8], detect-
ing visual similarities [34], detecting suspicious URLs [21], and
proposing machine learning models [16, 37]. Morever, some stud-
ies investigate source code features [20] and anomalies in HTTP
transactions [30], but do not consider the presence or absence of
analytics ID as a feature.

8 CONCLUSION
In this paper, we investigated the design of 18 third-party analytics
services and the reuse of analytics IDs across websites. Focusing
on malicious sites, we showed that attackers share analytics IDs
across URLs and even across platforms. We developed a pipeline
for e�ciently and accurately isolating and extracting analytics IDs
from malicious websites, extensions, binaries, and mobile apps and
showed that using our system we can discover tens of thousands
of new malicious URLs and perform attribution of malicious do-
mains even when they utilize WHOIS privacy protection services.
Finally, we described how we can take advantage of an oversight
of website-cloning tools for identifying phishing campaigns in the
wild and discussed how analytics services can take advantage of
their already-collected data to aid in the identi�cation of malicious
websites and the individuals behind them.
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