
No Honor Among Thieves:
A Large-Scale Analysis of Malicious Web Shells

Oleksii Starov‡, Johannes Dahse†, Syed Sharique Ahmad‡, Thorsten Holz†,
Nick Nikiforakis‡

‡Stony Brook University †Ruhr-University Bochum
{ostarov, syahmad, nick}@cs.stonybrook.edu {johannes.dahse, thorsten.holz}@rub.de

ABSTRACT
Web shells are malicious scripts that attackers upload to a
compromised web server in order to remotely execute arbi-
trary commands, maintain their access, and elevate their
privileges. Despite their high prevalence in practice and
heavy involvement in security breaches, web shells have never
been the direct subject of any study. In contrast, web shells
have been treated as malicious blackboxes that need to be
detected and removed, rather than malicious pieces of soft-
ware that need to be analyzed and, in detail, understood.

In this paper, we report on the first comprehensive study
of web shells. By utilizing different static and dynamic anal-
ysis methods, we discover and quantify the visible and in-
visible features offered by popular malicious shells, and we
discuss how attackers can take advantage of these features.
For visible features, we find the presence of password brute-
forcers, SQL database clients, portscanners, and checks for
the presence of security software installed on the compro-
mised server. In terms of invisible features, we find that
about half of the analyzed shells contain an authentication
mechanism, but this mechanism can be bypassed in a third
of the cases. Furthermore, we find that about a third of the
analyzed shells perform homephoning, i.e., the shells, upon
execution, surreptitiously communicate to various third par-
ties with the intent of revealing the location of new shell in-
stallations. By setting up honeypots, we quantify the num-
ber of third-party attackers benefiting from shell installa-
tions and show how an attacker, by merely registering the
appropriate domains, can completely take over all installa-
tions of specific vulnerable shells.

1. INTRODUCTION
Nowadays, web applications are among the most com-

mon attack targets used by adversaries for security breaches.
This is likely due to the fact that modern web applications
are complex pieces of software and thus they regularly suffer
from security vulnerabilities. Coupled with the insight that
the underlying web server can be used as a stepping stone
into an organization’s network, this makes web applications
an attractive target for attacks. After a successful compro-

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). IW3C2 reserves the right to provide a hyperlink to the
author’s site if the Material is used in electronic media.
WWW 2016, April 11–15, 2016, Montréal, Québec, Canada.
ACM 978-1-4503-4143-1/16/04.
http://dx.doi.org/10.1145/2872427.2882992.

mise, an adversary is thus interested in maintaining a per-
manent and stealth access to the web server. To this end, she
uses a so called web shell. A web shell is a piece of software
running on a (compromised) web server that provides an ad-
versary remote access to a variety of critical functions (i.e.,
execution of arbitrary commands, upload and download of
arbitrary files, elevation of privileges, or sending spam and
spear phishing e-mails). As such, web shells can be seen
as a type of Remote Access Trojan (RAT) running on a
compromised web server, thus being closely related to their
counterparts on compromised client systems.

Surprisingly, little is publicly known about the nature of
web shells and the surrounding ecosystem. Previous stud-
ies of this space treated shells as an artifact of successful
attacks and did not analyze them in detail. For example,
Canali and Balzarotti found in a large-scale web honeypot
study that attackers utilize shells during almost half of the
observed attacks [11], but they did not analyze the collected
files at all. The practical importance of web shells is further
highlighted in a report published by FireEye in August 2015:
in this report, the authors noted that web shells are an im-
portant building blocks of successful security breaches since
they can be used by an attacker during lateral movement in
a compromised network [17]. In all of these works, web shells
are treated as some kind of blackbox, without providing any
insights into their features and potential behaviors.

In this paper, we address this research gap and present
the results of a comprehensive study of web shells to shed
light into this aspect of cybercrime. To this end, we com-
pile a set consisting of more than 1,400 shells that we use as
the starting point for our analysis. By leveraging different
data preparation steps, we remove files with shallow differ-
ences and create data sets suitable for automated static and
dynamic program analysis. In the first analysis step, we
uncover the typical features offered by shells to understand
which functionality they provide to an adversary. Among
other results, we find that (i) many of the analyzed shells
leverage some kind of source code obfuscation or cloaking to
hide their presence on the web server, (ii) shells typically of-
fer features like password bruteforcers, SQL database clients,
and portscanners, beyond the traditional execution of arbi-
trary commands, and (iii) even the best detection system
misses 25% of the shells in our sample set.

In a second analysis step, we are interested in the invisible
features provided by the analyzed shells. More specifically,
we investigate whether shells contain some hidden backdoor
or homephoning mechanism (i.e., upon execution, a shell
surreptitiously communicates to various third parties with
the intent of revealing the location of new installations). De-

tecting backdoors and homephoning mechanisms is a chal-
lenging task since we are dealing with complex and poten-
tially obfuscated code, and the attackers have an incentive to
hide such mechanisms as well as possible. Hence, we leverage
different analysis techniques to reveal such behavior. First,
we manually audit a set of almost 500 web shells and find
that about 50% of them provide an authentication mecha-
nism in the code. However, we also find that a third of these
mechanisms can be bypassed, suggesting that these might in
fact be intentional authentication bypasses. Second, we uti-
lize honeypots to discover and quantify the client-side and
server-side leakage of information since this indicates some
kind of potential homephoning. Through the use of multiple
honeypot setups, we find that approximately 30% of the an-
alyzed shells exhibit client-side homephoning. On the server
side, we find that 4.8% of shells initiate server-side connec-
tions to a total of 34 remote IP addresses. During the eight
weeks of our honeypot experiment, we observed 690 connec-
tion attempts to access the secret URLs of our hosted shells,
indicating that backdoors are frequently misused in practice.

Finally, we discover that many shells depend on other do-
mains for remote content, some which had expired and were
actually available for registration. By registering the right
domains, we show how competing hacking groups and secu-
rity companies could automatically takeover malicious web
shells, or use these domains as a highly accurate method of
identifying newly compromised hosts.

In summary, we make the following contributions:
• We collect a set of 1,449 web shells via different meth-

ods as a starting point for our research. By means
of different data preparation steps (e.g., normalization
and deobfuscation), we distill a comprehensive set of
shells that represent typical attack tools and we use it
for our subsequent analyses.

• We provide novel insights into this type of attack tools
by determining the different types of features that shells
provide to an adversary. To this end, we utilize both
static and dynamic program analysis techniques to dis-
cover and quantify the visible and invisible features
offered by the web shells we analyzed.

• We experimentally confirm the rumor that many web
shells contain backdoors (e.g., authentication bypasses
or some kind of homephoning behavior). A compre-
hensive security analysis based on different analysis
techniques such as manual code auditing, automated
static program analysis, and execution in a honeypot
environment, enables us to discover such backdoors
and we provide empirical insights into this behavior.

Data availability : To foster additional research in this area,
we plan to make our web shell data set and the analysis re-
sults available upon request and proper validation. We hope
that the (wider) security community benefits from this in-
formation since web shells are a part of the attack landscape
that has not yet been analyzed in detail.

2. TECHNICAL BACKGROUND
To provide the necessary technical background to under-

stand the rest of the paper, we present a brief overview
of malicious PHP shells and the way that attackers utilize
them. Even though a malicious web shell can, in principle,
be implemented in any server-supported programming lan-
guage, we empirically found that PHP, due to its ubiquitous

Listing 1 Example of a simple PHP shell
<?php system($_GET[’cmd’]); ?>

presence on server environments, is the typical language of
choice. As such, we will focus on PHP-based shells in the
remainder of this paper.

A PHP shell is, at its core, a way of executing commands on
a remote server. Listing 1 shows the simplest possible shell,
receiving commands from a HTTP GET parameter and us-
ing the function system() to interface with the operating
system. The commands are executed with the privileges of
either the web server or the owner of the PHP script, de-
pending on the server’s configuration.

From an attacker’s point of view, the functionality pro-
vided by a PHP shell is used to send arbitrary commands
to a compromised machine. Malicious PHP shells are typ-
ically significantly more complicated than the shell shown
in Listing 1. They are often thousands of lines long, be-
long to different families (r57 and c99 being the two most
common ones [31]), and make heavy use of obfuscation to
avoid detection and make them harder to analyze. In ad-
dition to providing command execution on a remote server,
they potentially also provide a wide range of other func-
tionality, such as, a file manager, password bruteforcers for
FTP and SQL servers, self-remove functionality, and privi-
lege escalation using well-known exploits (see Section 4 for
details). Some malicious shells, instead of providing remote
control functionality to attackers through a web interface,
either turn the remote server into a spam-sending server (or
send spear phishing mails from a server within the target’s
organization), or force it to join a botnet [10].

These malicious web shells are uploaded on compromised
web servers through the abuse of all possible vulnerabili-
ties that eventually give the attacker file upload capabili-
ties. These include FTP/SSH credential bruteforcing, abuse
of a remote file inclusion and local file inclusion vulnerabil-
ity [25,26], SQL injection vulnerabilities, or abuse of an ex-
isting, benign file-upload mechanism that does not perform
proper sanitization of the uploaded files [27].

Next to uploading shells to vulnerable web servers, at-
tackers also seek to abuse existing shells on already compro-
mised web servers. One method of discovering these shells is
through the use of search-engine dorks, i.e., commands that
are meant to return indexed webpages that match specific
malicious criteria, such as exposed control panels and pages
with sensitive data [15]. For instance, the Google search
engine query filetype:php intext:‘‘!C99Shell v. 1.0
beta’’ is meant to return all indexed instances of a specific
version of the c99 shell. Figure 1 shows 6-months worth
of visits kindly provided to us by a website designer [36]
who has purposefully set up three honeypot pages that use
cloaking techniques to pretend to be shell installations to
search engine crawlers. The figure shows that, even for a
single website, there is a steady stream of tens of attackers,
seeking to abuse its already uploaded shells, on a daily basis.

3. DATA COLLECTION
Hundreds of different shells exist on the Web, due to both

the presence of multiple versions of the same shell as well
as shells that have been used as a base to create new shells.
Even though there have been several attempts to collect list
of common web shells (e.g. [1–3,5] and more), none of those
sources can provide any guarantees regarding completeness

Figure 1: Requests for shells via Google Dorks on
one single honeypot domain for a six-month period

and quality. In this section, we thus describe our process for
compiling the sets of shells that we used for our experiments.

Data sources and preparation. We started by col-
lecting all shells that we could find in underground hacking
websites as well as shells that researchers have observed in
their honeypots [1–3,5]. We avoided shells that are designed
for legitimate administration of servers since these are out-
side the scope of our study. By combining all the afore-
mentioned sources, we obtained our starting set of 1,449
shells. Next, we assessed and improved the quality of our
working set, filtering-out non-shells (such as files containing
only JavaScript code), shells written in languages other than
PHP, and shells with shallow differences to avoid potential
duplicates. We processed our 1,449 shells as follows:

• Filtering was done by checking for PHP tags and a
file size exceeding an empirically-determined thresh-
old. Through this process, we excluded 53 files and
obtained 1,396 potential PHP shells.

• Normalization was performed in order to remove non-
obvious duplicates, i.e., shells whose cryptographic ha-
shes may be different, yet are near-identical from a syn-
tactic point of view. Our shell normalization process
involved the removal of comments, new lines, whites-
paces and semicolons. In addition, we replaced all vari-
able names and function names with a single name.
Note that this process is not meant to preserve the
correctness of the code. We only use it to cluster shells
together and pick the first member of each cluster for
further analysis. We empirically found that this simple
approach yields sufficient good results to, in practice,
detect small differences in different files. Note that
more elaborated mechanisms based on an analysis of
the abstract syntax tree, fuzzy hashing [21], or via de-
termining the semantic equivalence [7] could be used
in the future, but we found our approach to be suffi-
cient in practice. Using this process, we obtained a set
of 804 unique shells.

• Deobfuscation was necessary since identical shells iden-
tified in the previous step may still be using different
obfuscation methods. Hence, we used the state-of-the-
art UnPHP deobfuscation service [4] to automatically
deobfuscated our set of 804 unique shells. UnPHP re-
turned the deobfuscated code of 661 shells (the service
was consistently timing out when trying to deobfus-
cate the remaining 143 shells), which we normalized
once more to arrive at a set of 607 unique shells.

Final datasets. Anyone who has ever attempted to ana-
lyze real-world code, especially of a malicious nature, under-
stands that some techniques that may work well in theory

might fail to work as expected in practice. Apart from 143
shells which UnPHP was failing to deobfuscate, we also no-
ticed that a number of shells which UnPHP claimed to have
successfully deobfuscated, were actually broken. A manual
analysis revealed that this was either because UnPHP was
not able to correctly escape all special characters in the de-
obfuscated statements, or because entire pieces of code were
missing from the deobfuscated result.

Since automated static analysis and dynamic analysis tech-
niques have different requirements for analyzing code, we
decided to create two subsets of our original 607 shells. For
the static analysis part, we only used the shells that were
either fully syntactically correct or the ones which we could
repair with a reasonable amount of manual effort. We also
removed shells which we knew would not provide any in-
teresting, from a static analysis point of view, results, such
as shells that were just printing local system information or
were merely sending an email to a predefined email address.
Finally, since we use static analysis to discover popular fea-
tures of web shells, we removed shells which did not conform
to our model of what a shell is, such as shells which were
just connecting to a remote server, in a bot-like fashion, and
executing any commands which that server would return.
At the end of this prefiltering process for static analysis, we
arrived at 481 unique shells which we refer in the rest of the
paper as the STATIC ANALYSIS set.

For the dynamic analysis part, we employed a more for-
giving approach where shells were not removed unless they
were completely broken, i.e., we kept the shells whose ren-
dering in a browser would result in some sort of visible UI,
even if that was partially broken. This includes the shells
that UnPHP was unable to deobfuscate. We removed shells
which provided no obvious malicious functionality, such as
files calling the phpinfo() function and exiting. Finally, we
decided to keep shells with bot-like functionality since we
wanted to learn more about the nature of the remote servers
and attackers. At the end of this process, we arrived at 541
unique shells which we refer in the rest of this paper as the
DYN ANALYSIS set of shells.

Our final data set represents different shell families, in-
cluding variants of c99, r57, WSO, B347k, NST, NCC, and
Crystal. However, many variants evolved from a family sib-
ling to a new shell family by applying different code obfusca-
tion techniques, adding new features, or copying code from
other shell families. For example, the c99 shell was extended
by a privilege escalation feature and renamed to c999 shell
and a fraction of the c99 shell’s code can be found in the
Fx29 shell family. PHP shells that are not explicitly labeled
in the source code are thus hard to classify and would lead
to inaccurate results.

4. ANALYSIS OF SHELL FEATURES
PHP shells evolved from simple one-liners to complex,

multi-functional web applications that provide the attacker
with a large set of features that go beyond the execution
of a single system command. Since little is know about the
actual features offered by such shells, our goal is to enumer-
ate the different types of features that PHP shells provide
to the attacker and to identify the most popular ones. This
provides insights into the attacker’s needs and desired steps
after a web server is compromised. At the same time, we
enumerate the number of shells that implement features in
order to hide the presence and activities of the shell.

4.1 Stealthiness
It is in the attacker’s interest to hide the presence of a ma-

licious backdoor in order to keep server access as long as pos-
sible. Thus, the source code of many PHP shells is heavily
obfuscated since this approach gives the attacker a variety of
advantages. First, an attacker aims to hide the shell’s inten-
tion and capabilities in case it is found by an administrator
of the compromised server. Second, obfuscation can ham-
per the automatic detection by static analysis tools, search
patterns, or antivirus products (see Section 4.3). Another
reason for obfuscation can be to hide the presence of a back-
door or homephoning mechanism (see Section 5) within the
PHP shell from being detected by another attacker. We an-
alyzed our final set of 481 shells in the STATIC ANALYSIS
set for signs of obfuscation and compared the original scripts
with their deobfuscated versions. This analysis led to the
following two obfuscation statistics:

• 20.6% (i.e., 99 shells out of 481) have an increased
token count (more than 1%) when enumerating the
number of tokens with PHP’s internal tokenizer after
deobfuscation, indicating unpacked PHP code.

• 20.8% (i.e., 100 shells out of 481) use eval() with an
average of 15.2 calls to eval(), reaching up to 91 calls.

Next to obfuscation that ensures server-side stealthiness,
we encountered techniques to hide the presence of the shell
from curious client-side visitors. This behavior is likely based
on the following insights: since search engine bots crawl and
index the entire web, they are likely to also index uploaded
shells that were left unprotected. This will then allow other
attackers to discover already compromised servers (through
the use of the aforementioned search-engine dorks) and take
over the uploaded shells. In addition, some search engines
now report that a website is most likely compromised, as
part of their search results. This likely leads to faster clean-
ups which is beneficial for website owners but not for at-
tackers. For these reasons, shell developers implement basic
techniques that hide the presence of the shell from search
engine crawlers. Based on the HTTP User-Agent header, a
request of a crawler can be identified in a rather straightfor-
ward way and a different behavior can be emulated. In our
deobfuscated set of 481 shells, we identified 76 shells (16%)
that check the user agent against a blacklist. For example,
61 shells respond with a 404 Not Found page if the user
agent contains the keyword Google. Furthermore, we iden-
tified 11 shells that respond with a 404 Not Found page by
default, unless the visitor sends the correct login credentials
that will reveal the shell’s presence and features.

In summary, we empirically find that 15-20% of the ana-
lyzed web shells leverage hiding techniques to conceal their
presence on a compromised web server, both from the owner
of the web server, as well as specific client-side visitors.

4.2 Interface Features
To better understand and enumerate the features that

web shells make available to attackers, we analyzed our
STATIC ANALYSIS set of shells with static taint analy-
sis techniques. For this purpose, we extended an existing
tool of our design [14] that is able to detect security vul-
nerabilities in PHP applications, such as remote command
execution, remote code execution, mail header injection, and
SQL injection vulnerabilities. Furthermore, the tool sup-
ports the analysis of file-related vulnerabilities, such as file

Figure 2: Feature distribution of the analyzed shells

upload, arbitrary file write/create, file disclosure, permission
manipulation, or file inclusion vulnerabilities. Each of these
vulnerabilities is interpreted as a feature when detected in
the deobfuscated PHP shell’s code by our prototype.

Our static analysis tool also performs context-sensitive
string analysis. This allows us to automatically inspect
the markup that reaches a sensitive sink and to enumer-
ate further features it cannot detect out of the box. For
example, when our tool analyzes sensitive sinks that exe-
cute system commands, the scanner reconstructs all possi-
ble strings (i.e., commands) that reach this sink. At this
point we applied regular expressions to identify commands
that we found commonly related to a file dropper (wget,
curl, lynx, get, fetch), a reverse or back connect shell
(perl, python, gcc, chmod, nohup, nc), or information
gathering (uname, id, ver, sysctl, whoami, $OSTYPE,
pwd). The results were complemented by additional feature
detection algorithms that we added to our prototype. For
example, when a download of a remote file through PHP’s
built-in file features is requested, a file dropper feature is
reported. Likewise, when the output of PHP’s built-in func-
tions or reserved constants related to system information
(e. g., php_uname()) is encountered during taint analysis of a
sensitive sink that prints data to the HTML response page,
a system information gathering feature is detected.

Moreover, we used the annotations regarding loops in the
control flow graph representation of a given shell in order to
classify certain vulnerabilities as features. For example, a
mail header injection within a loop is interpreted as a spam
feature and a login attempt to an FTP server or an HTTP
basic authentication within a loop is interpreted as a brute-
force feature. Similarly, when a built-in function is used
within a loop to establish a socket connection and the port
is the subject of iteration, a portscan feature is logged. Due
to space limitations, we omit all (inter-procedural) imple-
mentation details that we added to the tool.

The final results of our feature enumeration is shown in
Figure 2. The most prominent feature, appearing in 69%
of all shells in our collection, is the gathering of system
information. More specifically, the current working direc-
tory, operating system, and the PHP version is of interest
to the attacker. Next, the interaction with the file system
is supported by 67% of the analyzed shells. We summa-
rized detected vulnerabilities regarding file read (54%), cre-
ate (54%), list (40%), delete (38%), edit (29%), and modifi-
cation of permissions (22%) to one feature named file browser.
Separately, we found a file upload feature in 54% of the an-
alyzed PHP shells. Next to a file browser, we detected a
slightly less popular SQL browser to list all databases and
tables in about half of our shells, as well as rarely available
FTP browsers in only 13 of our 481 analyzed shells.

The traditional command execution feature was detected
in 59% of our shells. Next to arbitrary OS command execu-
tion, the shells often provide a prefixed list of commands in
the web interface, i. e., the c99 shell proposes commands to
find configuration and password files, or writable directories.
Less frequently offered (43%) is the ability to execute arbi-
trary PHP code through eval() and similar operators. This
feature appears in smaller shells that focus on stealthiness
rather than feature completeness. Additionally, we found
68 shells that offer arbitrary code execution through remote
file inclusion. In order to bypass restrictive firewalls, re-
mote command execution can also be bound to a separate
port that is opened through an external program (37%),
preferably written in Perl or C.

Other features are less frequently available and therefore
likely less important for an attacker as a core feature of a
PHP shell. For example, only 19% of the shells allow to send
an email and 12% of the shells allow to send out multiple
emails (which likely represents spam). The feature to launch
bruteforce attacks against FTP and HTTP authentication
credentials (19%) or port scans (10%) are also rarely avail-
able in practice. Note that these tasks can be performed in-
dependently from the attacked server. However, when used
as part of the PHP shell, the attacker is able to hide her IP
address while the compromised web server acts as a proxy.

Since our feature enumeration is based on code-fingerprints,
it could, in principle, fail for real-world PHP applications.
However, the code of PHP shells is comparably simple (no
OOP features, minimum inter-procedural analysis necessary)
and we did not encounter false positives during a manual
investigation of 50 sample shells. Nonetheless, we found
further features that were left out of our evaluation, for ex-
ample, the ability to crack password hashes, attempts to by-
pass PHP’s safe_mode, a HTTP proxy, and Denial of Service
(DoS) features. We expect these features to be less promi-
nent in PHP shells and hard to fingerprint generically, thus,
we decided to not include these into our evaluation.

4.3 Bypassing Antivirus Engines
Antivirus software—despite all its known limitations—is

arguably among the most popular security software among
users. Next to user and corporate environments, many web
servers utilize antivirus software to detect possibly malicious
uploads to their servers, either through the use of a legiti-
mate upload functionality (e.g., attachment in a webmail
application) or through the abuse of file-uploading vulnera-
bility (such as a remote file inclusion vulnerability).

To gauge the ability of modern antivirus software to de-
tect malicious web shells, we uploaded all 481 shells of our
STATIC ANALYSIS set to VirusTotal [9], an online ser-
vice which, at the time of this writing, uses 56 antivirus
engines to scan uploads and URLs. For 90% of our shells,
at least one antivirus engine of VirusTotal was able to de-
tect a shell as malware, with each shell being categorized
as malware by, on average, 15 scanners. The two most ac-
curate antivirus engines could detect 72.5% and 67.2% of
our uploaded shells, respectively. These numbers indicate
that, even though a collection of antivirus engines could de-
tect most of the shells, even the single most precise engine
(Avast) cannot detect about 25% of malicious web shells.

In an effort to understand the effect of obfuscation on the
detection of malicious web shells, we also uploaded the deob-
fuscated versions of the same 481 shells to VirusTotal. Sur-

Listing 2 Example authentication mechanism.
<?php
session_start ();
// configuration
$md5 = ’’;
// authentication check
if(!isset($_SESSION[’login’]))

if(empty($md5) || (isset($_POST[’pass’])
&& (md5($_POST[’pass’]) == $md5)))

$_SESSION[’login’] = true;
else { die("404 Not Found"); }

prisingly, the overall accuracy decreased to 88.5% of shells
being detected by at least one engine, and each shell now be-
ing detectable by, on average, only 10 scanners (compared
to the average of 15 scanners for their original obfuscated
versions). As an example, one specific shell that was de-
tectable by 22 antivirus engines became detectable by only
two engines when we used its deobfuscated version. This
decrease in the detection of malicious shells indicates that
some antivirus engines are most likely hardcoding pieces of
the original obfuscated shell in their database, without ever
deobfuscating the malicious web shell.

5. BACKDOORS IN WEB SHELLS
Since web shells are complex web applications, typically

measuring thousands of lines of code and using multiple ob-
fuscation layers, it is not unreasonable to assume that some
of these shells may be backdoored by attackers who decided
to capitalize on them. In the context of web shells, we differ-
entiate between traditional backdoors that involve a bypass
of an authentication mechanism, and “homephoning” back-
doors where a shell, upon loading, broadcasts its location to
third parties other than the attacker who uploaded the web
shell to a vulnerable web server.

5.1 Authentication Bypass
We manually examined our set of 481 deobfuscated shells

(STATIC ANALYSIS set) for authentication mechanisms
that restrict the shell access to users that possess a secret
(e.g., a password). At the same time, we audited these mech-
anisms for possible bypasses. Our intuition is that malicious
attackers do not freely publish their shells as a service to“fel-
low” attackers, but rather to gain access to servers that are
compromised by uncautious attackers using that shell.

Most of the authentication mechanisms found were simply
based on username/password credentials, either supplied by
HTTP basic authentication or an HTTP POST request via
a HTML login form. Furthermore, access was limited to
a given IP address or IP address range. We also observed
samples that require a secret key supplied via hidden HTTP
GET parameter or user agent, as well as samples that expect
a password which is then used as a XOR key to decrypt the
evaluated PHP code. Most of the detected mechanisms,
however, default to no required authentication, for example,
if the password in the configuration code is left empty.

Listing 2 shows an authentication mechanism that is used
in 23 of our analyzed PHP shells. Here, the variable $md5
is left empty and the session key login is automatically set
to true which authenticates the user’s session. If the vari-
able $md5 is initialized with the MD5 hash of a password,
however, the user has to provide the correct password for
authentication via an HTTP POST request before he can
access the shell’s features. Thus, by setting a password in
the shell’s code, the authentication mechanism is activated.

Listing 3 Variants for simulating register_globals.
<?php
extract($_REQUEST["c99shcook"]);
parse_str($_SERVER[’HTTP_REFERER ’]);
import_request_variables("GPC");
foreach($_GET as $k => $v) { $$k = $v;}

In order to automatically enumerate activated and deac-
tivated authentication mechanisms, we installed our set of
shells in a sandbox and visited their root page. Based on
our static and dynamic analysis, the following results were
observed for our set of PHP shells:

• 52.0% provide an authentication mechanism in the code,
i. e., 250 out of 481

• 30.8% of the authentication mechanism can be by-
passed, i.e., 77 out of 250

• 28.4% of the authentication mechanism are activated
by default, i.e., 71 out of 250

• 25.4% of the, by default, activated authentication mech-
anism can be bypassed, i.e., 18 out of 71

In the following, we present different types of backdoors we
encountered in our set of PHP shells that can be used to by-
pass the authentication mechanism. We believe that these
were installed intentionally by the creator or a redistributor
of the PHP shell. We also observed that many authentica-
tion mechanisms were copied among different shell families
and variants, including (perhaps unintentionally) the back-
door code. The detected backdoors can be grouped into
three categories: (i) registering global variables, (ii) using
unprotected features, and (iii) leaking the authentication
credentials. Note that, due to the code complexity and large
number of analyzed PHP shells, we do not claim complete-
ness for the detection of all backdoors in our set.

5.1.1 Register Globals
The PHP setting register_globals was activated by de-

fault before PHP version 4.2.0 and introduced many secu-
rity issues [29]. The setting allows an attacker to initial-
ize any global variable via HTTP request parameter. This
led to unexpected behavior and security issues, for example,
when the GET request to index.php?loggedin=1 initializes
the variable $loggedin in index.php to the value 1. Thus,
the register_globals directive was deactivated by default
in later PHP versions and was removed as of PHP 5.4.0.

Still, the same behavior can be achieved by using PHP
built-in features, as shown in Listing 3. For example, the
built-in functions extract() and parse_str() can be used
to populate values in an array or URL string into the global
scope. When these functions are called with user input and
no additional arguments, the register_globals directive is,
effectively, simulated. The same applies to a call to the
built-in function import_request_variables(). Moreover,
each key/value pair within the superglobal $_GET or $_POST
array can be populated into global variables by constructing
a loop and assigning each key to a variable dynamically.

The security implications of these one-liners are subtle
and hard to spot for untrained eyes, making them a per-
fect choice for planting backdoors in PHP shells. In fact,
in 70.1% of the backdoored PHP shells, one of these fea-
tures was injected between the authentication configuration
and the check, allowing to bypass the authentication com-
pletely. For example, the authentication mechanism shown
in Listing 2, when activated and backdoored, could then

Listing 4 Example authentication with backdoor locations.
// position 1
$s_auth = false;
if(is_authenticated ()) { $s_auth = true; }
// position 2
if($s_auth) { // protected shell features }
// position 3

be bypassed by overwriting the variable $md5 with an ar-
bitrary password or by setting the $_SESSION[’login’] key
directly (index.php?md5=0&_SESSION[login]=1). This back-
door is found in every c99 shell and was copied to a variety
of sibling shells that adopted c99 ’s extensive configuration
code that includes a subtle call to extract().

5.1.2 Unprotected Features
Other authentication mechanisms could be bypassed dur-

ing our analysis by abusing unprotected functionality (22.1%).
Sometimes likely by accident, sometimes clearly intentional,
certain features are not protected by the authentication mech-
anism and can be abused by an insider. Listing 4 demon-
strates three positions within a protected PHP shell where
we found backdoor code. For example, we found several
code execution vulnerabilities at position one or two, which
are accessible before the authentication is performed. This
allows an attacker to either upload another shell to the com-
promised server or to retrieve the shell’s source code includ-
ing its login credentials. Moreover, one shell switched the
variable $s_auth to true in case the GET parameter error
was set. Other samples were extended with a new feature at
position two or three. Although the corresponding HTML
interface was not visible without authentication, the back-
end of these features could still be accessed and abused by
an insider. For example, the feature to download the current
directory as a ZIP file allowed us to also retrieve the PHP
shell itself, revealing its source code and login credentials.

5.1.3 Information Leakage
Last but not least, some shells allow the circumvention

of the authentication mechanism by leaking the authenti-
cation credentials. For example, in seven shells, an email is
sent to the attacker’s mailbox that includes the compromised
server’s domain, path to the shell, as well as the authentica-
tion password. The original code was obfuscated and hidden
within the shell’s features. This makes it hard to spot this
functionality during a code review, specifically when only
the authentication mechanism itself is investigated.

5.2 Homephoning
Since web shells are typical web applications where at-

tackers communicate with the compromised servers via their
web browsers, shells can leak their location or other kinds
of information both from the client-side and the server-side.

At the client-side, when an attacker loads the page in
her browser, JavaScript code can be used to communicate
to the outside world and purposefully leak the URL of the
current page, i.e., the shell’s URL, by leaking the value of
the document.location.href browser property. Moreover,
all browser requests for remote resources, such as images,
Cascading Style Sheets, and JavaScript scripts, will typi-
cally include the current page’s URL in the Referer header
of each request. This allows not only for intentional home-
phoning, but also unintentional one, e.g., a web shell leaking
its location to Google, as it is fetching an analytics script.

Figure 3: Honeypot architecture for measuring web
shells homephoning

At the server-side, the shell can communicate with the
outside world through the use of a wide range of functions
provided by the programming framework itself, or by inter-
facing with the underlying operating system. For instance,
in PHP, a malicious shell can communicate with third par-
ties by using sockets, HTTP APIs (e.g., PHP’s http_get()
function), or using the ubiquitous wget utility.

Setup
To discover and quantify the client-side and server-side leak-
age of malicious web shells, we set up a honeypot infrastruc-
ture depicted in Figure 3. The details of this setup, involving
our set of 541 shells (DYN ANALYSIS set), are as follows:

1. Whenever a shell required explicit authentication, we
modified the underlying code to remove this require-
ment. This allowed us to reduce the complexity of our
overall setup since we can later use a shell by merely re-
questing the appropriate URL. These shells were then
copied to an Amazon EC2 virtual machine, in a non-
web-accessible folder.

2. We registered four available domains and resolved their
IP address to our virtual machine. The keywords in-
cluded in our four domains belong to four different cat-
egories, namely: sports, hacking, shopping, and bank-
ing. We chose to register domains indicating different
websites in an effort to entice as many attackers as
possible, who would see our domain names in the po-
tential requests of their homephoning shells.

3. We utilized the OpenWPM framework [16] on a second
server, to emulate an attacker browsing through each
of the uploaded shells through one of the four regis-
tered domains. While OpenWPM is intended for web
privacy measurements, its ability to record all client-
side, third-party requests was useful in later identifying
intentional and accidental client-side homephoning.

4. We implemented a series of scripts that allowed the
OpenWPM framework to synchronize with our server.
Namely, as the pseudocode in Algorithm 1 shows, Open-
WPM announces its intention to visit a specific shell,
causing the server-side to make that shell available
through one of our four registered domains and a spe-
cific file path. For instance, if OpenWPM indicated
that it wants the URL for shell3.php, our server-
side code would produce a link such as www.banking.
com/img/lib/shell3.php. The filepath not only makes

Algorithm 1 Pseudocode of the synchronization between
client and server, for the detection of shell homephoning

. Server-side code
function nextShell(shell)

current domain← pickRandomHoneypotDomain()
current path← pickRandomHoneypotPath()
copyToWebRoot(current domain, current path, shell)
startTCPDump()
return current domain+ current path+ shell

end function

function deleteShell(shell,shell url)
current trace← stopTCPDump()
storeTrace(current trace, current date, shell)
removeFromWebRoot(shell, shell url)

end function

. Client-side code
for shell in shells do

shell URL← nextShell(shell)
OpenWPM(shell URL)
sleepSeconds(30)
deleteShell(shell, shell URL)

end for

our overall URLs more believable for anybody watch-
ing, but also allows us to later differentiate between
generic crawlers visiting our main domains, and at-
tackers who know, because of homephoning, the ex-
act path to their malicious shell. After waiting for a
predetermined number of seconds, our client signals
the server to remove the analyzed shell from our web
server’s root directory.

The set of 541 shells was visited three times a day, for a
period of 8 weeks, starting from May 24, 2015. The only
assumption that we made in this experiment is that, if a
shell contains homephoning code, the execution of that code
should not be hard to trigger. That is, we assume that
a homephoning shell will greedily contact various predeter-
mined remote hosts upon the mere loading of its main page,
rather than wait for the unsuspicious shell user to click on
some specific link of the shell’s UI.

Results
Client-side homephoning: By inspecting the logs of client-
side, third-party requests, as captured by the OpenWPM
platform, we discovered that 29.2% of PHP shells contact
third-party domains, with an average of two domains con-
tacted per shell. Overall, our set of shells contacted a total
of 149 domains, resolving to 108 unique IP addresses. Ta-
ble 1 shows the 15 most contacted domains as well as our
manually curated categorization of these domains. One can
notice that web shells initiate third-party requests towards a
wide range of remote hosts, some of which are clearly benign.
These are cases of accidental homephoning, where a shell, in
the process of including a remote object, inadvertently leaks
its location to the remote host.
Server-side homephoning: The set of steps described
in Algorithm 1 allow us to precisely determine client-side
homephoning, as well as maintain an always available web
server whose logs we can later analyze to determine whether
attackers, notified by their homephoning shells, are trying to
access our server. This setup, however, falls short of allowing
us to do proper attribution of server-side homephoning of
specific shells. This is because, server-side processes that

Table 1: Top 15 Client-side Homephoning Targets
Domain #Shells Description

alturks.com 43 Parked domain
w0rms.com 20 Hackers portal

jino.ji.funpic.org 9 Under construction
front.facetz.net 6 RU analytics
hit4.hotlog.ru 6 RU analytics[

...
]
.pp.regruhosting.ru 6 Not found
w.uptolike.com 6 RU analytics
sync.audtd.com 6 RU analytics

display.intencysrv.com 6 RU analytics
cm.g.doubleclick.net 6 Ad services

counter.yadro.ru 6 Used by adware
sync2.audtd.com 6 RU analytics

fonts.googleapis.com 5 Google APIs
www.fbvideo.16mb.com 4 Suspicious

data.t00ls.org 4 Active attacker

are initiated by any given shell, can outlive the deletion of
the shell, as that happens in the nextShell step.

To account for this behavior, in addition to our long-lived
8-week experiment, we also run another experiment where
we revert to a known clean copy of the remote virtual ma-
chine after the analysis of each individual shell. We use the
results of this experiment to do proper, server-side home-
phoning attribution without worrying about the attacker’s
ability to connect back to our honeypot service.

By inspecting our collected packet traces and filtering out
connections due to Ubuntu update checks, DNS servers,
and Amazon-EC2-specific traffic, we discovered that 4.8%
of shells initiate server-side connections to a total of 34 re-
mote IP addresses. The remote hosts are located all across
the world with the top three countries being USA (16),
Republic of Korea (4) and China (2). Moreover, we note
that 70% of the server-side homephoning shells connect to
specific domains, instead of using hardcoded IP addresses.
Specifically, we detected 21 unique domains being contacted,
not counting ones that were just resolved but never actu-
ally contacted. The contacted domains include clearly be-
nign destinations like google.com and nmap.org, IRC des-
tinations like irc.dal.net and irc.studentwine.co.uk for
botnet communication, and obviously suspicious domains
such as pc117.zz.ha.cn or www.weigongkai.com.
Connecting attackers: During the eight weeks of our
honeypot experiment, we received 690 attempts to access
the URLs of hosted shells, from 71 unique IP addresses, lo-
cated in 17 countries with the top three being Turkey, USA,
and Germany. As mentioned earlier, since these URLs, e.g.,
www.banking.com/img/lib/shell3.php, were never made pub-
lic, anyone who knows them, must know them because a
shell, either through client-side, or server-side homephon-
ing, leaked its precise URL to an attacker.

These 690 requests were targeting 30 of our 541 moni-
tored shells, showing that not all homephoning shells will
eventually be accessed by attackers. This could be either
because of accidental homephoning, where the recipients do
not know that shells are contacting them, or because an at-
tacker is no longer present to react to homephoning requests.
In Section 7 we show how competing attackers or defenders
can take advantage of this behavior to hijack web shells.

Figure 5 shows the time series of the requests received per
day for our honeypot web shells. Even though the num-
ber of daily requests varies significantly, the smoothed av-
erage shows a steady increase of the requests until roughly
the middle of our monitored period, followed by steady de-
creased till the end of our 8-week experiment. This behavior

Figure 4: Number of shells that use particular PHP
commands silently

Table 2: Files that Shells silently access or modify
Group #Shells Examples

/var/www/html/∗/∗ 21 write test.txt, read own PHP file
/etc/∗ 8 named.conf, hosts, passwd, fstab

http://∗ 7 send own URL, load api.php, sender.txt
∗.php 6 dbs.php, shell.php, errors.php, ss.php, etc.

/tmp/∗ 5 qw7 sess, shellcode.so, Ra1NX
php.ini 5 write to php.ini or ini.php

.htaccess 5 write .htaccess or sym/.htaccess
∗.txt 5 kampret.txt, data.txt, cpaccount.txt

/proc/∗ 4 cpuinfo, meminfo, partitions, version

makes intuitively sense since in the beginning different at-
tackers discover the homephoning requests at different times
and visit these shell-promising URLs. Since our honeypot
server always responds with an HTTP 404 Page not found
error, the attackers slowly start giving up on their poten-
tial targets, perhaps attributing these errors to a successful
“cleanup” by the website administrator.

6. ANALYSIS OF SERVER-SIDE ACTIVITY
In the previous section we, among others, quantified the

percentage of shells that perform server-side homephoning.
Homephoning, however, is only one out of many possible
operations that a server-residing web shell can perform. In
this section, we provide a high-level overview of other shell-
related server-side activity, focusing on the activity that re-
sults from merely loading a web shell’s main page, i.e., ac-
tivity not triggered by the shell-operating attacker.

To discover this server-side activity, we first automatically
rewrite all 541 shells of our DYN ANALYSIS set to inter-
pose all functions of interest. We perform this interposing
through the use of PHP’s runkit framework [28] which al-
lowed us to log the calling of arbitrary system functions, to-
gether with their arguments, before allowing these functions
to proceed. In our case, the functions of interest include
functions that allow a shell to execute system commands
(e.g., exec, system, and shell_exec), and functions for the
reading and writing of files (e.g., fopen, file_get_contents,
and file_put_contents). The modified shells are then vis-
ited using the OpenWPM framework, using the same setup
as the for the discovery of server-side homephoning.

From our set of 541 shells, 170 shells (31.4%) call at least
one of our monitored functions, with 128 shells executing
system commands and 59 interacting with the file system.
Figure 4 shows the overall popularity of our monitored PHP
functions among shells, indicating a preference of the exec
and fopen functions over their alternatives.

Table 2 shows the files that are commonly accessed and
modified. Next to local files, some shells use fopen to open
and read remote URLs. Among others, we witnessed the

Figure 5: Daily number of attacker connections
to our honeypot domains. The blue line shows a
smoothed average of the same requests.

reading of remote configuration text files, the fetching of ad-
ditional PHP code that expands the functionality of a shell,
and the use of fopen as a method of server-side homephon-
ing (e.g., http://attacker.com/update.bin/admin.php?add=
URL_of_the_shell). In terms of local file accesses, some
shells manifest their malicious behavior by reading and writ-
ing important system configuration files like /etc/passwd
and /etc/hosts. The file named.conf, a configuration file
of the BIND DNS server, is particularly popular among ma-
licious web shells. Presumably, shells can modify BIND’s
configuration to change how a particular domain is resolved,
or poison the local server with malicious DNS entries.

Table 3 presents groups of popular system calls. For the
most part, shells collect different system information, in-
cluding the current user and OS type, the file system, and
even the list of running processes. An unexpected finding
was that some shells check the system for the presence of
specific applications. Besides queries for the version of Java
and Perl, some shells use the which Linux utility to check
for installed security-related software, such as, antivirus pro-
grams, (e.g., node32, and drwebd) and intrusion-detection
systems (e.g. snort, and rkhunter). We also noticed that
many shells check for Internet connection by using wget
to download http://www.google.com and inspect the result.
In some cases, instead of downloading the main page of
google.com, the shells use wget to fetch a file ending with
an image-related extension (e.g., .jpg), which they then re-
name to a .pl (Perl script) and execute it. We suspect shells
follow this pattern in order to evade intrusion-detection sys-
tems looking for suspicious downloads.

7. ANALYSIS OF STALE DOMAINS
In Table 1, one can see that the most commonly contacted

domain via client-side homephoning is the currently parked
domain alturks.com. Parked domains are domains whose
owners have given control of their domains to parking com-
panies which populate them with advertisements and give a
fraction of the advertisement profits to the original domain
owner [8, 19]. Owners of parked domains often register do-
mains that used to belong to individuals and companies but
they were left to expire, either due to oversight, or because
the original owner was no longer interested in the domain.

In the case of web shells and the alturks.com domain, one
can reasonably assume that this domain used to belong to
an individual or hacking group that had backdoored a large
number of web shells in order to contact the alturks.com
domain upon their loading. Even if that hacking group lost
interest in the domain, the backdoored web shells circulat-
ing on the underground were never updated to remove the
references to the included domain. Even though, in the case
of alturks.com, the parking company is likely returning 404
error messages to the shells’ requests for remote resources,
this shows the possibility of discovering and even hijacking

Table 3: Commands that Shells silently execute
Group Aggregated examples

Main System Info id(71), uname(41), echo $OSTYPE(23), pwd(16), whoami(13)
More System Info ls -la(7), df -h(2), uptime(2), ps aux(1), free -m(1)
Check Installed which *(4), wget -help(5), javac -version(2), perl -v(1)
Internet Usage cd /tmp;lynx|curl|GET *(8), wget|curl|lwp-download *(6)
Other actions echo abcr57(19), killall -9 host(1), crontab (1)

Table 4: List of stale domains registered. Shaded
entries are contacted via server-side homephoning.

Stale Domain
#Remote
Requests

#Referring
Domains

legal***.ru 4411 184
flyp****.us 1137 22
n**.org 749 23
nettekia****.com 521 33
evilc****.org 322 47
hack***.gen.tr 168 8
pira****.com 129 2
sil3nt****.com 24 1
Total 7461 311

new shell deployments by merely registering the appropriate
domains which hacking groups allowed to expire.

This problem was first observed in the context of remote
JavaScript inclusions by Nikiforakis et al. [24], who noticed
that popular websites were occasionally referencing remote
scripts of non-existing domains, a phenomenon which they
called stale domain-based inclusions. By registering the ap-
propriate domains, one could deliver malicious JavaScript
code to popular websites and use it to steal session cook-
ies and perform phishing attacks. In the case of web shells,
a similar stale domain-based inclusion is significantly more
harmful since web shells, by design, allow for server-side
command execution. An attacker that can inject malicious
JavaScript can effectively use it to send commands to the
compromised server on which the shell is situated. There-
fore, a stale domain-based inclusion in a web shell is suffi-
cient not only to take control of the shell itself, but also to
fully compromise the remote web server. Moreover, remote
stale references for passive content, e.g., images, are suffi-
cient to give away the location of new shells to anyone who
cares to register the right domains.

By analyzing the homephoning requests of web shells, we
discovered 11 domains which web shells were requesting re-
sources from and, at the same time, were available for regis-
tration. Table 4 shows the eight domains that we registered,
resolved to a host that we controlled, and returned HTTP
404 errors to all requests asking for content. We kept logs of
these requests using the standard Apache web server logs.
To avoid overestimating the problem due to visits by web
crawlers, we only count the requests towards specific web-
shell-related resources, e.g., GET /yazciz/ciz.js HTTP/1.1,
and further filter out all requests whose reverse DNS resolu-
tion indicates that the IP address of the client that requests
these resources belongs to a crawler.

Due to the different timelines involved with different top-
level domain registrations, such as .gen.tr and .ru, not all
domains became active at the same time. At the time of this
writing, we have logs for three months of requests. Over
this time period, we received a total of 7,461 requests for
remote resources, belonging to 311 unique remote victim
hosts. For requests associated with client-side homephon-
ing, the Referer header of the attacker’s browser leaked to
us both the IP address of the shell-utilizing attacker, as well
as the URLs of their shells and thus, implicitly, the domains
of newly compromised servers. For server-side homephon-

ing, where the compromised server directly connects to our
server, we conservatively count every IP address as belong-
ing to one website, even though, in cases of shared hosting,
a web server could be hosting hundreds of different websites.

For ethical reasons, we never attempted to validate any of
the shell installations claimed in the Referer headers of the
requests in our logs. At the same time, these headers typi-
cally contained sufficient information to convince us that the
requests are, in fact, originating from compromised servers.
One of the most often reoccurring patterns was a Referer
header exposing the directory structure of the compromised
website, such as, http://vict.im/admin/domainfonder.php?
act=ls&d=/home/victim/public_html/&sort=0a.

We recorded compromised websites all over the world, log-
ging many instances of shells on websites of local businesses
like an order service in Iran, a travel portal in China, a soft-
ware company in Russia, a shipping company in US, and a
college website in Morocco. A large fraction of the compro-
mised websites had Iranian or Vietnamese TLDs. We also
found cases that might have more severe consequences, e.g.,
a hospital website in Peru, a legal consultation office in Rus-
sia, a security services company in Vietnam. Our findings
demonstrate that websites hosting such critical information
are not exempt from the threat of malicious shells. We in-
formed the victim websites about the signs of intrusion.

Another interesting observation is that, for most of our
registered stale domains, we observed requests where the
Referer header was either from“localhost”or from“127.0.0.1”
with various high-number ports and paths. Since this header
can only be emitted if a web shell and the attacker’s browser
is situated on the same local machine, we can safely deduce
that these requests are because attackers and researchers
are trying out shells on web servers on their own machines.
This means that an attacker who has control of the appropri-
ate stale domains can now fully compromise machines that
would otherwise be inaccessible via the public Internet.

The silver lining of our findings is that security compa-
nies can start monitoring domains involved with homephon-
ing, anticipate their expiration, and register them before
an attacker, or an unsuspecting domain parker, does. This
will allow security companies to either automatically disarm
these shells or, at the very least, provide them with a highly
accurate method of identifying newly compromised hosts.

8. RELATED WORK
Even though web shells have been discussed in previ-

ous research, they are either only mentioned in passing,
or treated as malicious ”black boxes” that need to be de-
tected [23,30,32–35,37], rather than understood.

Canali and Balzarotti, in their large-scale web honeypot
experiment, deployed 17 publicly accessible web shells that
attackers could discover through the use of specially crafted
search engine queries, also known as dorks [11]. In addi-
tion to luring attackers to existing shells and studying their
behavior, the authors noticed that if attackers discover a
vulnerability that allows them to upload files, in 46% of the
cases, they will upload a web shell and use that shell to
interact with the compromised server. Interestingly, the au-
thors observed that attackers who would discover already
deployed shells, would use them to upload their own custom
shells and then switch to their own shells for further inter-
actions with the compromised host. The authors theorized
that this is because attackers know that the existing shell

may have a backdoor that would alert the original creator of
their presence. As we showed earlier in our study, many web
shells are indeed backdoored but these backdoors are trig-
gered as soon as the main page of the shell loads, making
the aforementioned evasive behavior completely futile.

In a follow up study that investigated the role of web
hosting providers in detecting compromised websites, Canali
et al. [12], among others, uploaded the c99 shell (arguably
the most popular web shell) to 22 shared hosting providers
and used simulated attackers to send commands towards
the server. Only one of the 22 investigated shared host-
ing providers identified the malicious shell, even among the
providers offering security services at an additional cost.

Kim et al. [20] compiled a collection of shells for bench-
marking the detection rate of popular shell-detecting tools.
The authors discovered that the tools either detected only
well known shells and ignored less known ones, or marked
a large number of benign files as “suspicious”, offloading the
work of verifying a script’s maliciousness to a human analyst.
Since the authors did not attempt any normalization or de-
obfuscation of their collected shells, it is possible that their
compiled dataset contained multiple obfuscated versions of
the same basic shells, which could be biasing their results
against the tested web-shell-detecting tools. For this reason,
we opted to compile our own set of malicious web shells and
follow the normalization routines described in Section 3.

Finally, it is worthwhile noting that web shells are not the
first hacking tools that contain backdoors. Cova et al. [13]
analyzed freely available phishing kits and discovered that
whenever a victim types in her credentials in a phishing
page generated by a phishing kit, the credentials are not
only made available to the user of the phishing kit, but also
to various third parties. In another instance of backdoored
hacking tools, Anti-CNN, a DDoS tool that was specifically
targeting cnn.com, was also backdooring the machines of
users that were participating in the DDoS attack [22].

9. CONCLUSION
In this paper, we presented the first comprehensive anal-

ysis of malicious web shells, by compiling a set of hundreds
of malicious PHP shells and using a combination of static
and dynamic analysis techniques to uncover the shells’ vis-
ible and invisible features. We showed that modern shells
provide a wide range of tools to an attacker, ranging from
remote command execution and portscanning, to password
brute-forcing and privilege escalation. In addition, we pro-
vide evidence that a substantial fraction of the analyzed
shells contain hidden backdoors and homephoning function-
ality, which attackers abuse to obtain access to compromised
servers. We studied the attackers visiting their homephoning
shells using honeypots, and described how other attackers,
as well as security companies, can use expired domains to
completely take-over malicious shells.

We argue that a better understanding of malicious web
shells will naturally result into designing better detection
techniques. Therefore, it is our hope that this paper and
the corresponding datasets that we will be making available
to other researchers, can be used to foster new research in
the area of web application malware.

Acknowledgments: This work was supported by the
Office of Naval Research (ONR) under grant N00014-16-1-
2264 and by the National Science Foundation (NSF) under
grant CNS-1527086.

10. REFERENCES

[1] JohnTroony’s php-webshells repository.
https://github.com/JohnTroony/php-webshells.

[2] Nikicat’s web-malware-collection repository.
https://github.com/nikicat/
web-malware-collection/tree/master/Backdoors/PHP.

[3] Tennc’s webshell repository.
https://github.com/tennc/webshell/.

[4] UnPHP, the Online PHP Decoder.
http://www.unphp.net/.

[5] Web Shells and RFIs Collection. http:
//www.irongeek.com/i.php?page=webshells-and-rfis.

[6] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis.
A Multifaceted Approach to Understanding the
Botnet Phenomenon. In Internet Measurement
Conference (IMC), 2006.

[7] A. Aiken et al. Moss: A system for detecting software
plagiarism, 2005.
https://theory.stanford.edu/~aiken/moss/.

[8] S. Alrwais, K. Yuan, E. Alowaisheq, Z. Li, and
X. Wang. Understanding the Dark Side of Domain
Parking. In Proceedings of the 23rd USENIX Security
Symposium, 2014.

[9] VirusTotal. https://www.virustotal.com/.

[10] A. Brandt. Malicious PHP Scripts on the Rise.
http://www.webroot.com/blog/2011/02/22/
malicious-php-scripts-on-the-rise/.

[11] D. Canali and D. Balzarotti. Behind the Scenes of
Online Attacks: an Analysis of Exploitation Behaviors
on the Web. In 20th Annual Network & Distributed
System Security Symposium (NDSS), 2013.

[12] D. Canali, D. Balzarotti, and A. Francillon. The role
of web hosting providers in detecting compromised
websites. In Proceedings of the 22Nd International
Conference on World Wide Web, pages 177–188, 2013.

[13] M. Cova, C. Kruegel, and G. Vigna. There is no free
phish: An analysis of ”free” and live phishing kits. In
Proceedings of the 2Nd Conference on USENIX
Workshop on Offensive Technologies (WOOT), pages
4:1–4:8, 2008.

[14] J. Dahse and T. Holz. Simulation of Built-in PHP
Features for Precise Static Code Analysis. In
Symposium on Network and Distributed System
Security (NDSS), 2014.

[15] Google Hacking Database (GHDB). https:
//www.exploit-db.com/google-hacking-database/.

[16] S. Englehardt, C. Eubank, P. Zimmerman,
D. Reisman, and A. Narayanan. OpenWPM: An
Automated Platform for Web Privacy Measurement.
Manuscript, 2015.

[17] C. Holmes. Malware Lateral Movement: A Primer.
https:
//www.fireeye.com/blog/executive-perspective/
2015/08/malware_lateral_move.html, 2015.

[18] T. Holz. A Short Visit to the Bot Zoo. Security &
Privacy, IEEE, 3(3):76–79, 2005.

[19] D. Kesmodel. The Domain Game: How People Get
Rich from Internet Domain Names. Xlibris
Corporation, 2008.

[20] J. Kim, D.-H. Yoo, H. Jang, and K. Jeong. ”webshark
1.0: A benchmark collection for malicious web shell
detection. In Journal of Information Processing
Systems (JIPS), 2015.

[21] J. Kornblum. Identifying Almost Identical Files Using
Context Triggered Piecewise Hashing. Digit. Investig.,
3, 2006.

[22] J. Nazario.
http://web.archive.org/web/20120722073150/http:
//ddos.arbornetworks.com/2008/04/
netbot-attacker-anti-cnn-tool/, 2008.

[23] NeoPI: Detection of web shells using statistical
methods. https://github.com/Neohapsis/NeoPI.

[24] N. Nikiforakis, L. Invernizzi, A. Kapravelos,
S. Van Acker, W. Joosen, C. Kruegel, F. Piessens, and
G. Vigna. You are what you include: Large-scale
evaluation of remote javascript inclusions. In
Proceedings of the 2012 ACM Conference on
Computer and Communications Security, CCS ’12,
pages 736–747. ACM, 2012.

[25] OWASP : Testing for Local File Inclusion.
https://www.owasp.org/index.php/Testing_for_
Local_File_Inclusion.

[26] OWASP : Testing for Remote File Inclusion.
https://www.owasp.org/index.php/Testing_for_
Remote_File_Inclusion.

[27] OWASP : Unrestricted File Upload. https://www.
owasp.org/index.php/Unrestricted_File_Upload.

[28] PHP: runkit Functions - Manual.
http://php.net/manual/en/ref.runkit.php.

[29] PHP: Using Register Globals - Manual.
http://php.net/manual/en/security.globals.php.

[30] R-fx Networks. Linux Malware Detect. https:
//www.rfxn.com/projects/linux-malware-detect/.

[31] R57 Shell | C99 Shell | Shell | TXT Shell | R57.php |
c99.php | r57shell.net. http://www.r57shell.net/.

[32] Web Shell Detector. http://www.shelldetector.com/.

[33] Webserver Malware Scanner.
http://sourceforge.net/projects/smscanner/.

[34] PHP Shell Detector – web shell detection tool.
http://www.emposha.com/security/
php-shell-detector-web-shell-detection-tool.
html, 2011.

[35] M. Stowe. PHP Malicious Code Scanner.
http://www.mikestowe.com/2010/10/
php-malicious-code-scanner.php.

[36] H. Sverre. c99.php - phpshell.
https://helgesverre.com/c99.php.

[37] T. D. Tu, C. Guang, G. Xiaojun, and P. Wubin.
Webshell detection techniques in web applications. In
Computing, Communication and Networking
Technologies (ICCCNT), 2014 International
Conference on, pages 1–7. IEEE, 2014.

APPENDIX
A. EXCURSUS ON IRC BOTS

During our manual code analysis, we found 18 web shells
that implement an IRC bot in PHP in order to connect to
an IRC server and become part of a bot network (i.e., a
network of compromised machines under the control of an
attacker [6, 18]). While most IRC bots try to connect to an
unavailable IRC server (i.e., a stale domain) or to an empty
IRC channel (i.e., the server is configured to not reveal any
information), we found a case of an active bot network that
is closely related to the analysis results presented in this
paper. In the following, we provide a brief overview of our
findings.

The referred IRC server had an uptime of four month
and the geolocation of the IP address suggests that the
server is located in Ukraine. However, certain names and
the language of choice used in the IRC channel suggest
that the attackers have an Indonesian origin. The analyzed
PHP bot connects to a #DdOs channel with the nickname
[M][crew]123. Based on the source code, we learned that
M indicates that the compromised server runs an Apache
web server and 123 is a random three digit number. In
the #DdOs channel, we could identify 20 other bots follow-
ing this name format, indicating compromised web servers
running the same PHP bot. Additionally, other nicknames
following different naming formats were present that likely
belong to other bots. Based on these names, we estimate a

bot network size of around 100 active bots during any given
time of the day.

Once connected, the bot sends its hosted OS information
to a private IRC channel and waits for commands that can
be provided via private IRC messages. The bot’s source
code shows that after a successful login with a hardcoded
password, the botmaster can force the bot to reveal the com-
promised system’s information, send spam emails, execute
system commands, download files, scan ports, as well as ini-
tiate TCP and UDP flooding attacks. The authentication
can also be limited to a fixed IP address. We extended our
copy of the PHP IRC bot with logging capabilities and re-
moved potentially malicious code (to prevent an abuse from
our system), and connected to the IRC server. However, our
honey-bot did not receive any commands in a period of 48
hours.

Furthermore, we discovered another interesting IRC chan-
nel on the same IRC server. Here, URLs of vulnerable web-
sites are reported by two crawler bots that seem to be hosted
in Russia and the Netherlands. For example, several URLs
referenced outdated installations of the PHP e-commerce
software osCommerce. Based on the request path, it is evi-
dent that a remote file upload vulnerability is targeted that
was disclosed in 2010. The nicknames of the bots suggest
that the vulnerable websites were identified by using a vari-
ety of search engines, such as Google, Bing, Yandex, Seznam,
Walla, Biglobe, and Ask. Moreover, the vulnerable websites
are exploited automatically: we could observe that about
six seconds after a vulnerable URL was posted to the chan-

nel, a new PHP bot following the aforementioned nickname
schema connected to the #DdOs channel. Its IP address
could be resolved to the very same domain in the previously
reported vulnerable URL in the second channel, indicating a
successful exploitation and infection with the PHP bot code.

