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Abstract—Deep Neural Network classifiers trained with the
conventional Categorical Cross-Entropy loss face problems in
real-world environments such as a tendency to produce overly
confident posterior distributions on out-of-distribution inputs,
sensitivity to adversarial noise, and lost performance due to
distributional shift. We hypothesize that a central shortcoming
– an inability to effectively process out-of-distribution content
within inputs – exacerbates each of these setbacks. In response,
we propose a novel learning framework called Innocent Until
Proven Guilty which prototypes training data clusters or classes
within the input space while uniquely leveraging noise and
inherently random classes to discover noise-resistant, uniquely
identifiable features of the modeled classes. In evaluation, we
leverage both academic computer vision datasets and real-
world JavaScript and URL datasets for malware classification.
Across these interdisciplinary settings, we observe favorable
classification performance on test data, decreased loss of per-
formance due to recency bias, decreased false-positive responses
on noise samples, and decreased vulnerability in several noise-
based attack simulations when compared to a baseline network
of equal topology trained with Categorical Cross-Entropy.
To the best of our knowledge, ours is the first work that
demonstrates significantly decreased vulnerability to blackbox
append attacks on malware. By applying the well-known Fast-
Gradient Sign Method, we show the potential to combine our
framework with existing adversarial learning techniques and
discover favorable performance by a significant margin. Our
framework is general enough for use with any network topology
that could otherwise be trained with Categorical Cross-Entropy.

Keywords-Deep Learning, Out-Of-Distribution Robustness,
Prototype Learning, Benign Append Attack, Malicious Injec-
tion, Distributional Shift, Recency Bias, Malware Classification,
Web Security

I. INTRODUCTION

Categorical Cross-Entropy (CCE) loss is a standard su-
pervised loss function used to train a variety of Deep
Neural Network (DNN) classifiers. CCE produces a purely
discriminative model with no embedded means to infer out-of-
distribution (OOD) content or effectively utilize classes that
do not possess uniquely identifiable structure. The Innocent
Until Proven Guilty (IUPG) framework provides alternative
architectural components and a hybrid discriminative and
generative loss function for training DNNs to classify
mutually exclusive classes. IUPG includes learning a library
of inputs within the original input space that – together with

the network – prototype uniquely identifiable subsets of the
input space. The network learns to map the input space to
an output vector space in which prototypes and members of
the relevant input subset map exclusively to a common point.
The distances between noise (or any class of data lacking
a prototypical description) and all prototypes in the output
vector space are maximized in training. We call any such
classes “off-target” while target classes have one or more
assigned prototypes. Off-target data helps to chisel down
the extracted features of target classes to that which is truly
class-exclusive as opposed to coincidental. In the context of
malware classification, this equates to learning inseparable
features of malware clusters that define their maliciousness
while ignoring benign content. During inference, each sample
is scanned for these inseparable qualities while ignoring all
structure outside the class, hence the technique assumes
each sample is “innocent until proven guilty”. Increasing
the specificity of learned features intuitively increases the
network’s resistance to any OOD content. As the central
hypothesis of this work: we propose that this is chiefly
responsible for the desirable effects we explore.

In evaluation, we use an equivalent network trained with
CCE loss to measure baseline performance – referred to as an
IUPG network’s CCE counterpart. We (1) explore the test set
classification performance of IUPG and its CCE counterpart
across various cybersecurity and computer vision settings
including different usages of noise; (2) compare the tendency
to produce false-positive (FP) responses on OOD inputs; (3)
compare the impact of recency bias (performance loss due to
distributional shift) on classification accuracy; (4) compare
both frameworks’ resistance to blackbox append attacks; (5)
demonstrate the applicability of existing adversarial training
techniques to IUPG. The rest of this work is organized as
follows: Section II discusses related work on relevant themes,
Section III defines the IUPG framework, Section IV details
the experiments we used to evaluate IUPG, and Section V
provides a summary and some final remarks.

II. BACKGROUND

Prototype-Based Learning: Among the earliest works
on prototype-based learning is learning vector quantization
(LVQ) [12] which can be thought of as a prototype-based
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k-nearest neighbors algorithm. In the taxonomy of LVQ
variants presented in [17], this work is comparable to GLVQ
[21] which falls under margin maximization of the data space
with Euclidean distance. IUPG, however, combines prototype
learning with DNNs and makes unique use of off-target
samples. Common goals of prototype-based learning in DNNs
include low-shot learning [16] and verdict interpretability
[15]. The model in [30] shares several similarities with
IUPG. However, prototypes in [30] are defined in the output
vector space of the model. These prototypes are not human-
interpretable and have no intuitive initialization. Critically,
when prototypes are defined this way, we observed frequent
convergence to solutions in which multiple prototypes merge
to a common point. This is supported by results in [30]
which report similar or worse performance with multiple
prototypes per class. We also could not find similar work
that utilizes off-target samples as IUPG does. This ability
in particular allowed us to discover considerable benefits
on problems such as malware classification where only one
class possesses a uniquely identifiable structure.

Append Attacks: Append attacks are concatenations of
adversarial content to inputs with the intent to perturb the
classification result [28]. This is of particular relevance to
malware classification where benign noise can be appended
onto malware to fool the classifier despite the malicious
activity remaining intact. Inversely, malicious content can be
injected into large benign files to evade detection. In what is
known as whitebox attacks [28], the appended noise can be
crafted while exploiting model details. In general, a blackbox
adversarial attack assumes no knowledge of the model and
is often the only attack possible against proprietary defenses.
This work provides evidence that even the simplest append
attack varieties can pose a serious threat to highly accurate
models. To the best of our knowledge, previous work in
deep learning lacks a generic solution for append attacks on
malware.

Out-of-Distribution (OOD) Classification: It is well
understood that DNNs (save some specialized highly non-
linear options such as RBF networks) trained with CCE are
prone to produce highly overconfident posterior distributions
for OOD inputs [22]. Reliably handling OOD content is
a critical requirement for real-world systems. Orthogonally
to our work, open-world frameworks often equip models
with external detectors that aim to identify and discard
OOD inputs [4]. Other work relies on learning an external
rejection function either concurrently or after training of
the classification network [6]. This work demonstrates an
embedded adeptness to handle OOD content resulting from
IUPG alone.

Combining Strengths: In general, any of the techniques
developed for CCE-trained DNNs to overcome whitebox
attacks in recent years, such as the many varieties of
adversarial training [28], can be equivalently applied to
IUPG-trained networks. IUPG loss can be used as a drop-in

replacement for CCE within these special training procedures.
An example of this is provided in Section IV-D wherein we
find consistently greater rates of success with IUPG. Similarly,
we suggest the combination of IUPG with external OOD
detectors is likely to outperform either in isolation.

III. IUPG FRAMEWORK

IUPG networks are encoders that map inputs and pro-
totypes from a common input space into an output vector
space. The novel components of IUPG exist at the input and
output layers of a DNN along with a special loss function.
All hidden layer details – including the number of layers
of different functional types organized into any topology –
can vary as needed based on problem relevance. Consider
a network, N : I → Rz , which maps the set of vectorized
inputs I to vectors in Rz . Conventional CCE training of N
includes mapping N (I) to vectors in Rc (where c is the
number of classes). We will explain the novel components
of IUPG by augmenting them onto the abstract network
architecture N . Refer to Figure 1 for an illustration of the
IUPG components.

Figure 1: IUPG components augmented on the abstract
network N .

Data Guidelines: For CCE training with c classes, it is
necessary and sufficient to acquire labeled examples of all c
classes. While IUPG can be trained with these datasets, we
find it is often useful to include off-target samples. For off-
target samples (~x, ~y) we define ~y = ~0. How to decide what
data or class is “off-target” is problem-dependent but intuitive.
If training a “cat” or “not-cat” classifier, there is only one
class with a uniquely identifiable structure. “Not-cat” does
not possess a prototypical description. Any learned indicators
of “not-cat” are likely just facets of the circumstantial training
data. “Not-cat” should be defined as the off-target class while
“cat” is assigned one or more prototypes. Alternatively, if
training a “cat” or “dog” classifier, both classes possess
uniquely identifiable structure and an off-target class should
be augmented to these classes. Statistical noise is often easy
to synthesize for off-target data.

Prototypes: IUPG networks process an input and a
library of ρ prototypes, P = {~p1, . . . , ~pρ} prototypes in a
Siamese [3] fashion. P is pictured as input to N adjacent
to ~x in Figure 1. Each ~p constitutes learnable weights of
the network. Each ~p learns prototypical information about
a subset of training data such that all its members will
exclusively map close to ~p after processing with N . Subsets
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can be learned automatically, specified with class labels,
or both. One way to define each ~p is as an element of I
itself. If elements of I are prohibitively large or a large
ρ is desired, a memory-efficient definition of ~p is as the
weight vector of a linear combination of training inputs.
Concretely, we designate static training samples to form a
basis set B. The elements of B are chosen through clustering
techniques to span the training distribution. We then define
each ~p ∈ R|B|. Before processing with N , we compute
the dot product softmax(~p) · B. Under both prototype
definition varieties, the choice for ρ can be guided by
domain knowledge or discovered through hyperparameter
optimization techniques. Domain knowledge can guide the
initialization of each ~p. E.g., one may wish to establish
cluster center-points as initializations that may correspond
to semantically meaningful divisions of a class. We found
cluster-based initializations to significantly reduce required
training time to convergence.

Distance Function: Vectors in N (I) are mapped to
an output vector space U ⊂ Rk via a fully connected
layer. k need not be equal to the number of classes. The
intermediate representation of ~x in U is denoted ~ux while
the representation of P is denoted Up = { ~u1, ~u2, . . . , ~uρ},
depicted in Figure 1. Measuring the distance between ~ux and
each ~uj ∈ Up is crucial. There are many options available
to define distance [18]. We define function d~α ( ~ux, ~uj) =∑k
i=1 e

αi |ux,i − uj,i|. This is L1 distance with a learned
vector of weights, ~α ∈ Rk, applied to each dimension after
scaling with ex to ensure non-negativity. This function pro-
vided satisfying results such that we did not feel the need to
explore more options. We use an adjusted sigmoidal function,
σ∗ (x) = 2

1+e−2x − 1, to bound all distances ≥ 0 between
[0, 1). Note a hyperbolic tangent function can also achieve
this. For input ~x, the final vector of distances is defined
~D = [σ∗(d~α( ~ux, ~u1)), σ

∗(d~α( ~ux, ~u2)), . . . , σ
∗(d~α( ~ux, ~uρ))].

Verdicts are made by thresholding the values in ~D.
Loss Function: IUPG loss seeks to minimize the

distance between samples and their designated prototype
in U while simultaneously maximizing the distances between
samples and all of their non-designated prototypes. The
proposed loss function in Equation 1 is minimizing a
summation of cross-entropy calculations between the label
distributions of each target class and the prototype-to-class
distributions of minimum distances in ~D. We will define
loss for a single sample (~x ∈ I, ~y ∈ Rc) where ~y is one-hot
encoded over c target classes. Assuming ≥ 1 target classes
each with ≥ 1 designated prototypes, the generalized loss
function for (~x, ~y) is shown in Equation 1.

J = −
c∑
i=1

γyi log

(
1−min

((
~D + ε

)
� 1

~ωi

))
+ (1− yi) log

(
min

((
~D + ε

)
� 1

~ωi

))
(1)

When yi = 1, we use γ ∈ R to scale the relative influence
of the distance to prototypes designated to class i. Recall

~y = ~0 for off-target samples, which necessitates the yi = 0
term otherwise their loss would be 0 always. Conceptually,
when yi = 1, we penalize the distance between ~x and the
closest prototype of class i. When yi = 0, we do the same
with inverted distance. We add a constant ε << 1 to D to
avoid computing log (0).

Assignment of ρ prototypes to c target classes is spec-
ified inside the ~ωi ∈ Rρ vectors. Denote the target class
[1, 2, . . . , c] that prototype ~p is designated to as C(~p). We
define each ~ωi with ~ωi,j = 1 + ε if C(~pj) = i and ~ωi,j = ε

otherwise. ( ~D + ε)� 1/ ~ωi thus linearly shifts the values of
~D for class i such that the distances to designated prototypes
is strictly < 1 while the distances to all other prototypes
is ≥ 1. Computing min(( ~D + ε)� 1/ ~ωi) then gives us the
minimum distance among the prototypes designed to class i.

Training and Inference Complexity: If all weights are
unchanging, Up need only be computed once and then can be
reused. The time complexity of the mapping from N (~x)→
~ux is O(kz + k) which is equal to its CCE counterpart

when k = c. The proceeding computation of ~D is composed
of dot products, application of ~α and application of σ∗(·),
which scales O(ρk2 + ρk + ρ) accordingly. Assuming Up
is calculated prior, the previous two operations envelop the
different operations of IUPG versus its CCE counterpart
during inference. Note both are highly parallelizable and
typically insignificant compared to the computation of N (~x).
During training, we must additionally compute Up anew once
per training batch. This is equivalent to adding ρ samples to
each batch. Note IUPG also increases the number of learnable
weights by ρ|~p|+ |~α|+ z(k − c).

IV. EXPERIMENTS

We consider malicious JavaScript (JS) and URL clas-
sification as well as MNIST [14] and Fashion MNIST
[29] classification in our experiments. For JS, we consider
both a binary generic malware classification problem and a
multiclass malware family tagging problem. All models are
implemented in Tensorflow [1] and are trained with the Adam
optimizer [11]. A training batch size of 32 and learning rate
of 5× 10−5 is used throughout. We use ReLU and sigmoidal
activation across all convolutional and fully connected layers,
respectively. These hyperparameters allow both IUPG and
the CCE trained networks to converge after approximately
the same number of batches. The shared hyperparameters
used in this work were tuned while using CCE loss – thus are
biased toward CCE counterparts. For IUPG, we set k = 32
throughout. When defining all ~p ∈ I, we used K-means++
[2] on the training data to calculate prototype initializations.
When defining all ~p with a basis set, we used K-means++ to
instead determine members of B. Three different networks
are used in place of N for our experiments. The topology
of N for all settings is illustrated in Figure 2.

Image Classification: For brevity, MNIST [14] and
Fashion MNIST [29] are treated much the same. Both datasets
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Figure 2: The function N used for (A) MNIST and Fashion
MNIST, (B) JS, and (C) URLs. For (A), the model consists of
parallel convolutional layers. C:128@5x5 is a convolutional
layer of 128 5x5 filters. maxP@2x2 is 2x2 max pooling.
FCC is a fully connected convolutional layer. FC:512
is a fully connected layer with 512 units. For (B), char-
level and token-level input representations are processed
independently. EVL refers to an embedded vector lookup
operation. seqComp refers to a sequence compression
operation. globalmaxP refers to a global max pooling
operation. For (C), C:128@11,3x30 denotes two different
heights used in the filter banks: 11 for char-level input and
3 and token-level input.

are broken into random 50k-10k-10k Train-Test-Val (TTV)
splits. When required, we generate Gaussian noise images
as well as images of random strokes with a Random Forest
Classifier to filter out accidental true positives. Images are
preprocessed with max-min scaling and mean subtraction.
When using IUPG, each ~p ∈ I ⊆ R28×28 and we designate
1 prototype per target class.

Malicious JS and static URL Classification: Malicious
JS and static URL classification are challenging tasks in
web security [5, 13, 20]. Append attacks are particularly
popular among JS malware, e.g. malicious injections to
benign scripts, which motivates its study here. A simple
yet critical observation of malware classification is that
benignness is definable only insofar as that which is not
malicious. For IUPG, we define benign data as the off-target
class, i.e. no prototypes are used to model it.

Benign JS was collected by crawling the top 1M domains
from Tranco list [19]. In addition to Tranco’s filtering, we
ignored samples flagged by state-of-the-art commercial URL
filtering services. We leveraged VirusTotal (VT) [24] as the
main source of malicious JS samples. We required a VT
score (VTS) of at least 3 which was empirically shown to
be reasonably accurate. Our malicious and benign URL data
was collected from the use of static and dynamic URL filters
and analyzers from an industry cybersecurity company over
internet traffic as well external data sources (such as VT). For
binary JS malware classification, we used a 450k-600k-600k
TTV split with 70:30, 96:4, and 96:4 benign to malicious
ratios, respectively. Substantial benign samples are included
to accurately measure performance under strict false-positive

rate (FPR) requirements. FPRs of ≤ 0.1% are common in
the industrial cybersecurity setting because of the exorbitant
costs of FPs [23]. For building multiclass malware family
tagging classifiers, we isolated 9 distinct malware families
with 10k-1k-1k TTV samples per family. Equal parts benign
data were added to form our multiclass training dataset. To
generate OOD samples, we scrambled the order of tokens
in benign scripts uniformly. For URLs, we used a 14M-2M-
2M TTV split with 50:50 class ratios. We also collected a
separate 2M, 50:50 test set one year after the initial collection
to test recency bias.

Our JS and URL classifier architectures, illustrated in (B)
and (C) of Figure 2, is inspired by prior work in NLP [8, 9,
10, 13, 25, 26, 27, 31]. All inputs are represented at two levels
of abstraction: streams of chars and tokens. All URLs are
padded to a fixed, maximal size while JS files are dynamically
padded per batch. For token-level representations, (B) uses a
single channel vocabulary of learned token embedded vectors
chosen based on frequency. For (C), we include a char-
by-word channel similar to [13]. We additionally use an
independently trained Hidden Markov Model to produce
randomness scores for each token which scales a learned
embedded vector to produce a third randomness channel.
When using IUPG, for JS, each ~p ∈ I with a fixed size. We
designated 1 prototype per family for multiclass models while
binary models have 4 prototypes designated for the malicious
JS class – chosen empirically. For URLs, we experiment with
all ~p both defined as a member of I and with a basis set of 100
malicious URLs. Empirically chosen, 4 and 100 prototypes
are designated for the malicious URL class, respectively.

A. Classification Performance

Full Low-Shot

FPR ≤ 1% 0.1% 0.01% 1% 0.1% 0.01%

Multiclass IUPG 0.60%± 0.02 0.77%± 0.02 1.06%± 0.11 3.54%± 0.35 6.08%± 0.31 9.36%± 0.22
CCE 0.62%± 0.06 0.83%± 0.03 2.48%± 0.89 5.27%± 0.79 7.90%± 0.39 16.45%± 3.81

Binary IUPG 0.24%± 0.02 0.75%± 0.03 2.82%± 0.17 3.34%± 0.05 6.38%± 0.12 10.99%± 0.18
CCE 0.46%± 0.05 1.13%± 0.07 3.50%± 0.23 6.20%± 0.68 10.49%± 0.99 15.67%± 1.15

Table I: Malicious JS classification test set µ±SEM FNR over
all non-benign classes. For multiclass models, the low-shot
training dataset consisted of 10 randomly selected samples
per non-benign class; for binary models, 1000 randomly
selected malware samples.

We explore classification performance on our various
datasets with different combinations of training and testing

Trained w/o
Noise

Trained w/
Gaussian Noise

MNIST IUPG 0.83± 0.03 0.95± 0.02
CCE 1.00± 0.07 1.00± 0.03

Fashion
MNIST

IUPG 8.57± 0.10 8.40± 0.09
CCE 9.03± 0.10 8.94± 0.08

Table II: Image classification no-noise test set µ±SEM error
percentages.
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FPR ≤ 1% 0.1% 0.01%

MNIST IUPG 10.02± 0.54 19.18± 0.58 28.61± 1.88
CCE 18.86± 2.37 52.73± 5.61 76.70± 4.33

Fashion
MNIST

IUPG 31.93± 1.75 48.60± 2.60 55.72± 1.49
CCE 59.25± 1.08 72.10± 1.62 81.87± 2.60

Table III: Image classification test set µ ± SEM error
percentages when the test set contains Gaussian noise images
and models are trained without noise. Decision thresholds
are configured to obey a maximum FPR.

Original 2019 Test Set 2020 Test Set

FPR ≤ 1% 0.1% 0.01% 0.001% 1% 0.1% 0.01% 0.001%

IUPG† 3.61% 15.21% 33.93% 52.90% 39.92% 51.39% 63.47% 73.96%
IUPG 3.52% 16.01% 36.19% 62.56% 40.39% 53.77% 67.66% 84.55%
CCE 3.51% 16.11% 37.13% 63.56% 41.25% 54.35% 69.22% 100%

Table IV: Malicious URL classification test set FNR. †
signifies a basis set was used to define all ~p. Decision
thresholds are configured to obey a maximum FPR.

with noise. When training a CCE counterpart with synthesized
noise, we augment a dedicated noise class. For multiclass
models, we define an FP as an off-target sample being
classified as any target class. We used a single confidence
threshold for all target classes. If surpassed, the maximum
confidence target class is predicted. When testing without
noise in Table II, the maximum confidence target class is
predicted always. Note also that in all Tables except Table II,
decision thresholds are configured to obey a maximum FPR.
Results are presented over 5 trials with varying random seeds
where applicable. We find a reliably stable or decreased false-
negative rate (FNR), error percentage and variation across
Tables I, II, III, and IV.

VTS = 0 VTS > 0

IUPG 184 312
Ensemble 223 203

Table V: Detections with
0.005% test set FPR config-
ured thresholds organized
by VTS.

Note that Table III can also
be interpreted as investigat-
ing OOD attack susceptibil-
ity since models are trained
without noise and then tasked
with classifying a test set that
includes noise. In Table IV,
we see IUPG retains more of
its performance in the pres-
ence of distributional shift
over a period of one year compared to CCE. Fitting with
IUPG’s central hypothesis, the noise-resistant features of the
IUPG network are naturally more robust to distributional
shifts in the benign class. Prototype definition strategies
appear to affect performance. Clusters of malicious URLs
are numerous and diverse. Intuitively, we’d see a benefit
upon defining a large number of prototypes with a basis set.

As an additional investigation of our central hypothesis,
we trained a singleton IUPG model (Figure 2, (B)) and a
larger stacked ensemble of CCE networks for JS classification
such that the test set FNR of the ensemble was lower than
the IUPG model at the same FPR. We amassed a new

collection of >5M JS samples taken from top-ranked popular
websites. With thresholded test set FPR ≤ 0.005%, we cross-
referenced all detections from both models on this dataset
with VT [24]. A high VTS indicates a strong consensus of
maliciousness among a large array of industry cybersecurity
service providers. The VTS of the detections of both models
is displayed in Table V. Importantly, we see a significant shift
toward a higher VT consensus on IUPG detections despite
an opposite performance gap on the test split. We feel this is
important to highlight due to the prevalence of constructing
TTV splits from a similar distribution but deploying models
in more complex environments.

B. Out-Of-Distribution (OOD) Attack Simulations

In addition to the exploration in Table III, we explored
the tendency of IUPG and its CCE counterpart to produce
FP responses on OOD inputs at decision thresholds that are
representative of confidence levels of in-distribution data. We
are thus peering into the differing tendency of the models
to output similar confidence levels on OOD samples as in-
distribution samples. The results of our analysis are displayed
in Figure 3.

Figure 3: OOD attack simulation results. The FPR was mea-
sured over OOD test sets with decision thresholds configured
based on the 75th − 95th percentiles of all confidence scores
produced on target class test data. (A) Image classification
models trained without noise over a Gaussian OOD test
set. (B) Image classification models trained without noise
over a random stroke OOD test set. (C) Image classification
models trained with Gaussian noise over a random stroke
OOD test set. (D) Binary JS classifiers over an OOD test
set of randomized benign JS.
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Fragment
Size 10 100 1K 5K 10K 25K 50K 75K 100K

Multiclass
Models

IUPG 0.00 8.04 17.06 19.80 20.85 31.22 37.33 36.27 36.22
CCE 0.00 7.48 21.71 46.85 57.20 74.83 85.20 83.99 83.86

IUPG‡ 0.00 0.01 0.02 0.04 0.04 0.07 0.10 0.13 0.14
CCE‡ 0.01 0.01 0.04 0.09 0.11 0.22 0.54 0.76 0.83

Binary
Models

IUPG 0.09 0.21 3.70 9.73 19.15 39.70 56.15 57.44 57.53
CCE 0.38 3.16 23.72 42.23 52.42 74.38 86.35 84.09 86.69

IUPG‡ 0.05 0.04 0.04 0.25 0.50 1.28 2.57 2.09 5.61
CCE‡ 0.36 0.48 0.83 3.39 6.46 17.12 39.85 45.43 54.70

Table VI: Append attack simulation results. In each cell is
the percentage of malware in which the model produces a
malicious verdict on the original but a benign verdict upon
appending a fragment of benign data of a given size in
chars. 20 random fragments are tested per malware. Decision
thresholds are configured to obey a maximum of 0.1% FPR
on the test set. Adversarial training is denoted by ‡.

We find smaller FPRs with IUPG by a large margin
when imposing decision thresholds representative of typical
confidence levels on target class test data. A lower tendency
to produce FPs on OOD content allows using looser decision
thresholds in real-world systems leading to a higher recall.
This result helps to corroborate the widening classification
performance gap at stricter FPR requirements as seen
throughout Section IV-A.

C. Append Attack Simulations

We explored the vulnerability to append attacks of our
JS malware classifiers. The results of our simulation are
displayed in Table VI. For each epoch, we also tried
dynamically modifying all non-benign classes such that 33%
of all its members are appended with a random benign
fragment in the same TTV split. Fragments are given random
sizes between 1000 and 5000 chars.

We found significant margins between the vulnerability of
IUPG and its CCE counterpart with and without adversarial
training. Critically, note the failure of the binary CCE‡

model to protect against append attacks beyond the fragment
sizes used during training. Note that the binary dataset
contains hundreds of malware families with one generic label
thus represents a significantly harder problem compared to
multiclass classification. Our multiclass classes are far less
variable thus extracted features are free to be more specific –
leading to less susceptibility to activation on noisy benign
input. Additionally, note that the blackbox append attack
can take the form of malicious injections into large benign
files. Over a dataset of real-world malicious JS injections,
we discovered the IUPG network to boost the number of
detections from 76 to 2,259 over the aforementioned larger
ensemble in Section IV-A. This pragmatic result corroborates
the results in Table VI.

D. Fast-Gradient Sign Method (FGSM) Attacks

To demonstrate the potential to combine IUPG with exist-
ing adversarial training techniques, we combined the image

classifiers with the Fast-Gradient Sign Method (FGSM) [7]
training procedure. We discovered IUPG yields significantly
more resistance to FGSM attacks compared to its CCE
counterpart both with and without FGSM adversarial training.
This is visualized in Figure 4.

Figure 4: Accuracy over correctly classified test images versus
the scaling factor of FGSM perturbations. (A) Standard train-
ing. (B) Models trained with the FGSM training procedure.

In part (B) of Figure 4, we use common FGSM training
parameters of α = 0.9, ε = 0.25 on MNIST and α = 0.5,
ε = 0.05 on Fashion MNIST. Fitting in with our core
hypothesis, IUPG networks should be less sensitive to low-
level perturbations by design. This is especially due to
IUPG’s prototyping mechanism which encourages exclusive
sensitivity to high-level information shared among a subset
of data. Both Figure 4 and Table VI demonstrate the
superiority of using IUPG combined with special adversarial
training compared to using either in isolation. We recommend
combining strengths for the greatest success in future work.

V. CONCLUSION

We have presented the IUPG learning framework and
demonstrated its impact on classification networks compared
to CCE. Our core hypothesis is a boosted capacity to properly
handle OOD content as provided by IUPG’s inherent noise
resistance and increased feature specificity. This feature
logically connects all of the supportive results presented
in this work: increased or stable classification performance,
decreased performance loss due to recency bias, decreased
FPs on OOD noise, and decreased vulnerability to some noise-
based attacks. Properly handling OOD content is critical
for models in real-world environments such as malware
classification where benignness cannot be reasonably cap-
tured with a finite sample. Future applications of IUPG into
existing adversarial learning and OOD detector techniques
pose a promising direction for future work. We showed the
unique benefits of IUPG are particularly useful to malware
classification efforts. In that context, append attacks can lead
to risky false-negatives while OOD failures can lead to costly
false-positives.
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