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ABSTRACT
Despite phishing attacks and detection systems being extensively
studied, phishing is still on the rise and has recently reached an all-
time high. Attacks are becoming increasingly sophisticated, lever-
aging new web design patterns to add perceived legitimacy and, at
the same time, evade state-of-the-art detectors and web security
crawlers.

In this paper, we study phishing attacks from a new angle, focus-
ing on how modern phishing websites are designed. Speci�cally,
we aim to better understand what type of user interactions are
elicited by phishing websites and how their user experience (UX)
and interface (UI) design patterns can help them accomplish two
main goals: i) lend a sense of professionalism and legitimacy to the
phishing website, and ii) contribute to evading phishing detectors
and web security crawlers. To study phishing at scale, we built an
intelligent crawler that combines browser automation with ma-
chine learning methods to simulate user interactions with phishing
pages and explore their UX and UI characteristics. Using our novel
methodology, we explore more than 50,000 phishing websites and
make the following new observations: i) modern phishing sites
often impersonate a brand (e.g., Microsoft O�ce), but surprisingly,
without necessarily cloning or closely mimicking the design of
the corresponding legitimate website; ii) they often elicit personal
information using a multi-step (or multi-page) process, to mimic
users’ experience on legitimate sites; iii) they embed modern user
veri�cation systems (including CAPTCHAs); and ironically, iv) they
sometimes conclude the phishing experience by reassuring the user
that their private data was not stolen. We believe our �ndings can
help the community gain a more in-depth understanding of how
web-based phishing attacks work from a users’ perspective and can
be used to inform the development of more accurate and robust
phishing detectors.
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1 INTRODUCTION
Despite the fact that phishing attacks have been studied extensively
and a variety of detection systems been proposed [11–13, 15, 22, 23,
26, 36, 45], phishing is still on the rise and has recently reached an
all-time high. For instance, according to a recent report [3] by Cisco,
over 90% of data breaches occur due to phishing attacks. To evade
defenses, attackers develop increasingly sophisticated phishing
websites that leverage modern web design patterns to attain a high
level of perceived legitimacy and, at the same time, evade state-of-
the-art detectors [11, 26] and web security crawlers [45].

In this paper, we study phishing attacks from a new angle. Specif-
ically, we aim to provide a more in-depth understanding of how
modern web-based phishing attacks work from a users’ perspective,
as a way to provide insights that can inform the development of
more accurate and robust defenses. To this end, we study how mod-
ern phishing websites are designed, to better understand what type
of user interactions are elicited by these malicious websites and
how their user experience (UX) and interface (UI) design patterns
may help them concurrently accomplish two main goals: i) lend a
sense of professionalism and legitimacy to the phishing website,
and ii) contribute to evading phishing detectors and web security
crawlers.

Liu et al. [26] have very recently proposed an initial step towards
leveraging information about web UI input elements to improve
phishing detection. The authors propose to identify the intent of
phishing pages to steal users’ credentials. By combining visual UI
analysis to identify credentials input boxes with the detection of
brand-related logos, the proposed detector is able to outperform
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previous visual phishing detectors. However, the proposed system is
limited to only identifying pages that request login credentials using
a combination of computer vision-based analysis and heuristics (e.g.,
speci�c keywords within submission buttons). In our study, we �nd
that many modern phishing websites (around 28%) do not present
users with a simple �rst page that contains the page logo and login
credentials request. Rather, they often require some form of “click
through” user veri�cation, before reaching a page that requests
user data. Furthermore, many phishing websites do not ask the user
for login credentials at all (see example in Figure 11, in Appendix).
Therefore, we believe that the �ndings from our study can be used
to signi�cantly strengthen future defenses, including [26].

User inputs required on phishing websites have also been par-
tially explored in recent work on web security crawlers. For in-
stance, CrawlPhish [45] explores how modern phishing websites
implement cloaking to evade analysis by security crawlers. This
includes user interactions, such as pop-ups, mouse movement, and
click-through actions. However, while CrawlPhish focuses only on
cloaking, our work analyzes the user interactions elicited by phish-
ing websites beyond the �rst user veri�cation page. Furthermore, in
our study we found that only about 9% of phishing sites do require
some form of user veri�cation to navigate beyond an initial page,
before requesting some form of user data. By exploring complex
phishing attacks at multiple stages, our study provides both new
insights on user veri�cation interactions and an in-depth analysis
of victims’ experience on modern phishing websites.

To study phishing websites at scale, we developed an intelligent
phishing website crawler that combines browser automation with
machine learning methods to infer the inputs elicited by these web-
sites, mimic user interactions with phishing pages, and explore
their UX and UI characteristics. Starting from a large commercial
feed of live phishing websites consisting of more than 50,000 phish-
ing URLs collected between March 20th, 2022 and May 1st, 2022,
our crawler is programmed to interact with each phishing website,
automatically identify and interpret its UI elements using machine
learning methods (e.g., OCR, object detection and classi�cation),
forge and enter syntactically valid data into the identi�ed input
�elds, and along the way collect information to enable an at-scale
analysis of the UX �ow that real users would encounter on these
websites. By intelligently simulating user actions, we are able to
gain deeper insights into the entire phishing attack UX from start to
�nish. An overview of our measurement system and data analysis
process is provided in Figure 6.

Using our novel measurement methodology to explore the more
than 50,000 phishing websites in our data feed, we make the fol-
lowing new main observations: i) modern phishing sites often im-
personate a brand (e.g., Microsoft O�ce), but surprisingly, without
necessarily cloning the design of the corresponding legitimate web-
site; ii) they often elicit personal information using a multi-stage
(or multi-page) process, to mimic users’ experience on legitimate
sites; iii) they embed modern user veri�cation systems (including
CAPTCHAs); and ironically, iv) they sometimes conclude the phish-
ing experience by reassuring the user that their private data was
not stolen.

In summary, we make the following contributions:

• We study phishing from a new angle to better understand
what type of user interactions are elicited by phishing web-
sites and what user experience (UX) and interface (UI) design
patterns they use. The results from our study can help in-
form the development of more accurate and robust phishing
detectors.

• To study phishing websites at scale, we developed an in-
telligent phishing website crawler that combines browser
automation with machine learning methods to infer the in-
puts elicited by these websites, mimic user interactions with
phishing pages, and explore their UX and UI characteristics.
As phishing websites are naturally adversarial, our crawler
aims to overcome a number of challenges related to how
phishing website attempt to hide content from automated
analysis (e.g., crawlers that use simple HTML parsing).

• Using our novel measurement system, we interact with and
collect data frommore than 50,000 live phishingwebsites. For
instance, we found that 45% of phishing sites use amulti-page
data stealing design pattern, mimicking user data gathering
on legitimate websites. Furthermore, 9% of modern phishing
sites use di�erent forms of initial user veri�cation before
navigating the user to the data collection pages.

• We have made our system publicly available1 to foster future
research in this area.

2 MODERN PHISHING - EXAMPLES AND
CHALLENGES

In this section, we discuss a few representative examples that
demonstrate some of the UX and UI characteristics of modern
phishing websites, and discuss the challenges that these phishing
sites pose to at-scale measurements.

(a) (b)

Figure 1: (a) Real-world phishing site targeting the DHL
brand; (b) Login page on legitimate DHL website.

Brand impersonation does not require cloning. Figure 1a
shows an example of a recent phishing page that impersonates
the DHL brand. While the design is quite convincing, it does not ac-
tually closely mimic the true DHL website (�gure 1b); it is su�cient
for it to be believable.
Challenges: Measuring the number of phishing sites that do not
closely mimic their legitimate counterpart is di�cult. The following
main ingredients are needed: i) determine the brand that is imper-
sonated by a phishing site, and ii) determine if the phishing page
closely resembles the impersonated website (e.g., visually and/or in
its HTML structure). We address these challenges by leveraging the

1https://github.com/karthikaS03/PhishInPattern
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(a) (b)
(c)

(d) (e) (f)

Figure 2: Example of multi-step phishing website that impersonates Net�ix. (a) Page 1: click-through page; (b) Page 2: click-
through page; (c) Page 3: Subscription Setup Page; (d) Page 4: Stealing �nancial information; (d) Page 5: OTP con�rmation page;
(e) Page 6 (UX termination): Con�rmation message for submitting the (now stolen) data.

brand labeling provided by our phishing data feed, and by leverag-
ing VisualPhishNet [11] to determine if the phishing site is similar
to the legitimate brand website or not, as explained more in detail
in Section 5.
Input identi�cation and inference obstacles. One of the key
characteristics of phishing websites is the fact that they focus on
stealing users’ data, and thus must have a way for a user to input
and submit information. This is most typically accomplished by
having the user submit a web form, which can include several input
boxes and drop-down menus.
Challenges: Although the phishing page must include input boxes
and visually impersonate a legitimate brand, there is no restriction
on the way that this is accomplished. The same rendering of a web
page can be achieved with di�erent HTML and JS code. Obviously,
the phishing site designers have an interest in making automated
parsing of their pages as di�cult as possible. For instance, Figure 3a
shows a phishing page that impersonates the USAA’s website. The
page includes a form requesting the user’s personal information.
However, this page was built by using a background image contain-
ing the name of the input box �elds, as shown in Figure 3b. Then,
the input boxes are simply positioned on top of the background
image. Clearly, this makes the automated interpretation of the page
challenging, although visually the page looks perfectly believable
to potential victims. To address this and similar challenges, we use
a combination of HTML parsing and OCR to infer the location and
type of data requested by each input box.
Multi-stage phishing. Another approach that the attackers use to
mimic the UX on legitimate sites is to elicit detailed user information
in a multi-step (or multi-page) process. This is to resemble what

(a) (b)

Figure 3: Example of real-world phishing site using a back-
ground image to evade form parsing. (a) Full page after ren-
dering. (b) Background image used to render the form.

many users experience on legitimate sites, wherein the website
provides the user with a brief explanation before asking for more
sensitive data, such as payment information. Figure 2 shows an
example of a phishing campaign that does just that. The phishing
website impersonates Net�ix, and includes multiple pages that let
the user subscribe to a (fake) service, assure the user that they can
cancel the service at anytime (at step 3), and proceed to collect
payment information.

Interestingly, some phishing websites are designed with an end-
to-end UX �ow that includes a purposeful termination phase. For
instance, after the user enters the required personal information,
they might be shown a message of “congratulations” or con�rma-
tion of success, as shown in the example in Figure 2f. In other
cases, the phishing site may simply redirect the user to the legiti-
mate brand website. More notably, we also observed a number of
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phishing campaigns that terminate the phishing experience with a
reassuring message that their data was not phished (Figure 4).
Challenges: To be able to automatically navigate through the entire
UX �ow, we need to automatically interpret what the page is asking,
enter plausible and correctly formatted data, activate the submit
form action, and collect and analyze all details about the pages
encountered along these multi-stage phishing attacks. We discuss
our approach towards addressing this problem in Section 4.

Figure 4: Examples of fake phishing awareness training mes-
sages.

User veri�cation. Some modern phishing websites do not present
the user with a page that immediately requests for data (e.g., via a
web form on the �rst encountered page). Rather, in some cases, the
phishing site designers will present the user with a message that the
user needs to read and acknowledge. For instance, in Figure 2a the
user is required to click on a “Next” button that will take the user to
the next stage of the phishing UX �ow (the data stealing phase). This
is referred to as click-through cloaking in [45], because this type of
UX design not only tends to lend a sense of legitimacy to thewebsite,
but also hinders the ability of existing web security crawlers to
explore internal pages. Similarly, some phishing victims may be
presented with di�erent types of CAPTCHAs that must be solved or
a one-time-password (OTP) that must be entered before proceeding,
as shown in Figure 5. Other sites that elicit login credentials pretend
that the �rst login attempt failed and ask for the credentials a second
time, likely as a way to verify whether a user is actually typing
the credentials and responding correctly to the error message by
entering them again.
Challenges: The challenge in this case is to proceed beyond the
�rst page, to be able to explore the remaining stages of the phish-
ing UX. Admittedly, this is di�cult, especially in the presence of
CAPTCHAs and OTPs. Although there exist previous works on
automatic CAPTCHA breaking [21, 42], it is very hard to break
the large variety of CAPTCHAs, including custom ones, used on
phishing websites. Rather than attempting to break all di�erent
CAPTCHAs, we focus on automatically recognizing and measuring
what type of click-through or CAPTCHA is presented to the user
and if it relies on a well-known user veri�cation library or custom
code.

3 METHODOLOGY OVERVIEW
We now provide an overview of our methodology for automatically
interacting with phishing websites and collecting information that
we will use to analyze the UX and UI design patterns they employ.
An overview of our measurement framework is shown in Figure 6

Overall, our approach to measuring phishing UX and UI patterns
can be divided into two main parts: (i) an intelligent web crawler

(a) (b)

Figure 5: Example of (a) CAPTCHA and (b) OTP on a modern
phishing website.

(Section 4) that is designed to visit a phishing website, infer what
type of inputs the site elicits from users, simulate user interactions
(including entering forged but syntactically valid data), and navigate
through the website’s pages as a victim would do; and (ii) a data
analysis component (Section 5) that uses the data collected by the
crawler to measure UX and UI characteristics of modern phishing
websites.
Intelligent Phishing Crawler:We develop a custom crawler that
can automatically interact with phishing websites. To this end, we
developed a set of custom Puppeteer [18] scripts to extract all input
elements, perform JS event logging, automate page analysis to infer
what the web page is requesting, and decide how to interact with
the page next. To extract input elements, the crawler �rst identi�es
them by parsing the web page’s DOM tree, computes the visual
location (i.e., the rendering bounding box) of these elements, and
then uses a set of heuristics that combine DOM analysis and OCR to
�nd the text associated with each input box. Next, once the crawler
derives all input �elds and their respective textual descriptions, it
uses a statistical classi�er that is trained to map each input textual
description to an input type. Finally, the crawler leverages Faker [1]
to forge syntactically valid data for each input type, enters this data
into the form and submits it to the phishing site.

If no input box is found on a page, as in the case of a click-
through page (see example in Figure 2a), the crawler attempts to
interact with other page elements, such as hyperlinks and buttons.
To identify the presence of buttons on a page, the crawler uses a
combination of DOM analysis and a deep learning-based object
detector that we trained speci�cally to identify buttons on web
pages. The crawler stops when no more progress can be made (e.g.,
no new data can be submitted and the crawler is not able to advance
to a next page). More technical details can be found in Section 4.
UX and UI Data Analysis: As our crawler navigates through a
phishing website, it collects detailed information about the pages it
encounters, which we use to analyze the UX and UI design patterns
used in modern phishing websites. We broadly categorize the de-
sign patterns we study as User Interface (UI) Patterns, Multi-Stage



PhishInPa�erns: Measuring Elicited User Interactions at Scale on Phishing Websites IMC ’22, October 25–27, 2022, Nice, France

Live Phishing 
Websites

Intelligent Crawler

User Verification 
Pattern

UI
Patterns

Multi-Stage
Phishing Patterns

Multi-Factor 
Authentication

Input Fields
Analysis

Click-Through

CAPTCHAs

Multi-Page
Forms

Double
Login

UX Termination
Patterns

Data Analyzer

Input 
Identification Input Classification

Payment Form Payment Form

**** **** **** ****56

10 2026 ****

Simulated
Input

Brand
Impersonation

Figure 6: Overview of our intelligent crawler and data analysis process.

Phishing Patterns and User Veri�cation Patterns. Under UI Patterns,
we include measurements related to the visual design of the pages
and to characteristics of the data stealing forms. For instance, we
measure the occurrence frequency with which di�erent data types
are requested from the victim. Under the Multi-Stage Phishing cat-
egory, we measure how frequently phishing websites use multiple
steps to collect user data, and report the distribution of the data
types that are requested at each step. In addition, we also measure
other UX patterns that are associated with multi-step phishing
pages, such as patterns related to how the victim’s experience on
the phishing website ends. These UX termination patterns include
redirecting the victim to an error page, to the login page of the
impersonated brand’s legitimate website, to a “congratulations” or
“success” message, or to a message that reassures the user that her
data is safe.

We also separately measure how many phishing sites employ
user veri�cation techniques such as click-through, CAPTCHAs
and multi-factor authentication. During our study, we noticed that
phishing sites use a variety of methods to accomplish this goal.
Especially, di�erent phishing sites that make use of CAPTCHAs
implement di�erent CAPTCHA types. This makes it di�cult to
automatically recognize whether a CAPTCHA is present on a web
page or not. To solve this problem, we built a custom object detec-
tion system that is speci�cally trained to recognize many di�erent
types of CAPTCHAs embedded in web pages. We describe our
technical approach in more details in Section 5.

4 INTELLIGENT PHISHING CRAWLER
As mentioned in Section 3, our crawler is designed to visit a phish-
ing website, interpret what the website is asking for by using a
combination of page DOM analysis and machine learning-based
computer vision methods, forge and submit syntactically correct
data into the phishing site’s forms, and overall navigate the phish-
ing experience end-to-end, as a real victim would do. Along the
way, the crawler collects a variety of information about the pages it
encounters to enable the UX and UI analysis described in Section 5.

We built our intelligent crawler on top of Puppeteer [18] and
the latest stable Chrome browser. To enable at-scale measurements,
we built a Docker-ized version of our crawler, and used a “clean”
container for each phishing website we visit, to take advantage of
a fresh browser pro�le for each browsing session. We then created
a crawler farm that allowed us to visit and collect data from more
than 1,000 phishing websites per day, on average.

Given a URL selected from our phishing URLs feed, the crawler
automatically loads the corresponding web page and waits until
the browser has rendered it and the network is idle (e.g., using
Puppeteer’s networkidle2 option). It then captures a screenshot
of the page and the current state of the DOM tree for analysis. In
the following, we describe how the crawler interprets the content
of a page based on the state of the DOM and visual page rendering,
and how it decides what actions to take next.

4.1 Input Field Identi�cation
First, the crawler attempts to identify whether the page contains
any form elements, such as input boxes and drop-down menus. To
this end it explores the DOM tree looking for input and select
nodes (for brevity, in the following when referring to input we
mean either input or select). For each of these DOM elements,
the crawler does the following:

(1) Collect related DOM elements, such as the form element that
an input belongs to and their node properties such as id,
name, type, placeholder text and innerText (if present).

(2) Collect information about neighboring DOM elements (i.e.,
parent and sibling nodes), including nodes such as div, span,
text contained under those nodes, etc., which may provide
information about what type of data an input �eld may be
asking for.

(3) Because phishing pages are sometimes structured to make
DOM analysis di�cult (see example in Figure 3), we also
perform a visual analysis of the elements around each input
box. Speci�cally, we aim to identify neighboring text labels
that may explain what the input �eld is requesting. To this
end, we �rst compute the rendering bounding box around
the input �eld (e.g., see Listing 1 in Appendix), and then by
using the Tesseract OCR engine [8] on visual regions of the
page to the left and on top of the input box (up to a threshold
distance, measured in pixels).

Once the input �elds on a page are identi�ed and information
about their neighboring page elements and text labels has been
collected, we send this information to an input �eld classi�er, as
described below.

4.2 Input Field Classi�er
The goal of the input �eld classi�er is to take the information
collected by the input �eld identi�cation module described earlier
and to infer the type of data that each input box is expecting. To this
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end, we build a multi-class classi�er that, for each input box, takes
the related information as input, translates it into a feature vector,
and outputs a data type label selected among a predetermined set
of common types, including name, email, password, phone number,
credit card number, etc. (a complete list of data type labels is shown
in Table 6 in appendix). To achieve this goal we take the following
steps:

(1) Feature vector computation: Given DOM nodes and node
properties related to an input box collected by the input �eld
identi�cation module (Section 4.1), we �rst extract all strings
included in the node’s content and node property values,
as well as the labels extracted from the visual rendering
of the page via OCR. We then �lter out noisy strings by
removing stop-words and possible special characters (e.g.,
non-ASCII characters), and by only keeping valid dictionary
words (including common acronyms). We then use a bag-of-
words approach to compute feature vectors.

(2) Data type labeling: Given the features related to an input
box, we pass them to a multi-class classi�er based on the
SGDClassi�er algorithm [6], which performed better on this
task than other common statistical classi�ers (e.g., Multino-
mial Naive Bayes). The classi�er then outputs the data type
label with the highest con�dence score. To �lter out possible
classi�cation errors, we set a conservative threshold of 0.8
on the data type con�dence score. Data type labels that have
a lower than 0.8 con�dence score are rejected and the input
box is labeled as unknown.

(3) Training the classi�er: Training is performed iteratively, in
an active learning setting. The classi�er is initially trained
on a relatively small dataset of manually labeled input �elds.
Then, the classi�er is used to attribute a label to new input
�elds found on new phishing websites. Input �elds that are
labeled as unknown are sent to a human expert to be labeled
manually, and then fed back to the classi�er for re-training.
To reduce manual e�ort and help experts label unknown
input �elds, we developed a custom web application that
presents all the information gathered about each input �eld
to the user and highlights the input box on the related web
page screenshot in which it was found. This enables the
expert to visually infer the data type related to the input box
and thus to record the correct ground truth label.

Model Training and Evaluation. To train and test this model, we
used our crawler to collect text extracted (including via OCR) from
input �elds found in real-world phishing sites and formed a custom
dataset made of these texts. We then manually assigned input �eld
categories by referring to the related webpage’s screenshots. Over-
all, we labelled 1,310 input �eld samples. Of these, we used 1,000
samples for training and tested the model on the remaining 310
samples. To evaluate the performance of this multi-class input �eld
classi�er, we calculated the F1-score metric across each of the labels
and averaged all F1-score values, resulting in an average score of
90%. Table 6 (in Appendix) presents a detailed breakdown of the
F1-score, Precision and Recall per input �eld category.

4.3 Simulating and Submitting Input Data
Once the input boxes have been labeled, we leverage Faker [1] to
forge syntactically correct data for each input �eld. The data type
labels output by the input �eld classi�er map directly into data types
available in the Faker library, making it straightforward to forge the
corresponding data. For input �elds labeled as unknown the crawler
enters a predetermined default string. Finally, we need to submit the
form. However, this step is less straightforward than it may seem
at �rst. This is because the crawler needs to automatically identify
how to trigger the form submission, which can be complicated by
the adversarial web design patterns used by phishing websites.

We attempt to submit the forged data by trying the following
approaches:

• Enter: the crawler simulates the Enter key press while the
focus is on an input box.

• Submit button: we perform DOM analysis to check whether
the DOM contains a button. This includes checking for DOM
elements such as button and input with a type attribute
being image or submit. If such an element is found, the
crawler clicks on it. In addition, if these standard elements
are not found, we also look for hyperlinks that may be styled
as a button. To identify these, we apply a set of heuristics
for DOM analysis.

• Form action: if we cannot �nd a button via DOM analysis, for
instance, because the page visually renders the submit button
using HTML “tricks”, such as using canvas, SVG path, etc.,
we look for a form element in the DOM, get a JavaScript
object reference, e, that points to it (e.g., via its id or name,
or by traversing the DOM), and invoke e.submit().

• Visual detection: we also attempt to identify a button by build-
ing a deep-learning object detection module that is trained
speci�cally to detect buttons in web pages. To this end, we
start with a pre-trained Faster-RCNN [34], and �ne-tune it
using 10,000 screenshots of automatically generated web-
pages with a variety of randomly selected logos, input boxes,
CAPTCHAs, and labeled buttons. Because the placement
of the buttons in these pages is known, it can be used for
�ne-tuning the Faster-RCNN model.

After each attempt to submit the data, we check whether the
browser transitioned to a new page. Notice that the phishing site’s
main interest is to steal users’ data, and it is not easy for the attack-
ers to verify if the data is real or forged in real time, as long as it
is syntactically correct. Therefore, if the user is presented with a
di�erent page after submission, this typically indicates that the data
has been accepted and sent to the attacker’s server. On the other
hand, if the crawler detects that no page transition occurred, it
will attempt to generate a new set of forged data and try to submit
again. This is needed because some of Faker’s data types result
in generating syntactically valid but randomly chosen data, and
we noticed that in some cases the data that is generated is not
accepted as valid by some phishing forms. To address this issue, we
attempt to submit forged data on a given page for up to three times,
before aborting the browsing session. Notice also that detecting
whether the page indeed changed is not entirely straightforward,
as it is not su�cient to check whether the URL changed. To this
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end, we employ the page transition detection method described in
the following section.

4.4 Page Transitions and Termination
If no input box is found, the crawler still attempts to �nd a button-
like element to interact with, using the same approach described
earlier to detect a form submission button. This is motivated by the
fact that some phishing websites may present the user with a �rst
“click-through” button, like the one in the example in Figure 2a.
If no element is found with which to interact, the crawler stops
making progress (i.e., no new page is reached) and the browsing
session will therefore terminate. On the other hand, the crawler
will continue to interact with the website if a new page is detected,
until no more progress is made or a timeout (20 minutes, in our
experiments) is reached.

To determine if the crawler is making progress after interacting
with a page, we devised a set of heuristics to determine whether the
page changed. For instance, after submitting data on a page such
as the one in Figure 2d, the user may be presented with a di�erent
form, like in Figure 2e or some kind of termination page, like in
Figure 2f. In either of the these two scenario, the page changes, and
thus we determine that the crawler has made progress and repeat
the same process described earlier on the newly reached page.

Determining if the page changes is easy when the browser navi-
gates to a new URL. However, this is not always the case. In practice,
we found that it is not uncommon for the page to visually change
while the URL remain the same. This can is achieved via JavaScript
code that dynamically changes the content of the page. In this lat-
ter case, we still want to automatically detect a page change and
determine that the crawler has been making progress (i.e., we do
not want to prematurely end our crawling session). To solve this
issue, every time we load a page we compute a lightweight DOM
hash. Speci�cally, we traverse the DOM tree (depth-�rst) and keep
only input, div, span, button, and label elements, which are of-
ten su�cient to “shape” the structure of a phishing page. We then
concatenate the HTML tag of these nodes (in depth-�rst order) and
compute a hash of the resulting string. After the crawler interacts
with the page, it recomputes the DOM hash of the page and checks
for changes. If the hash di�ers, the crawler infers that the page has
visually changed (even if they URL remained the same). Other more
sophisticated approaches for page change detection are possible,
but we found the use of this approach to be e�cient and e�ective
in practice.

4.5 Metadata Collection
Throughout the entire crawling session, the crawler collects a large
variety of information about the pages it encounters. First, it will
keep a record of all the DOM and visual analysis it performed,
including information about all input elements, buttons, etc. that
it encountered. In addition, the crawler also captures information
about all network requests made by the page, including any redi-
rections and the content of the network responses. Concurrently,
the crawler also instruments the JavaScript code running on each
page it visits to record all calls made by the page’s code to the
addEventListener API and all JavaScript events that are triggered

while a page is rendered. We use these network and JavaScript ac-
tivity logs in our post-processing analysis, for instance to measure
how many phishing pages may use a keylogger to steal users’ data
even if they happen to realize (a bit late) that they may be inter-
acting with a malicious page and decide not to press the submit
button (see Section 5.1).

4.6 Crawler Farm Setup
To automatically crawl phishing sites at scale, we leverage Docker
containers [17] to launch several parallel instances of our intelligent
crawler. To run this crawler farm, we used an Ubuntu 16.04 Linux
machine with 128 GB of memory and a total of 30 Docker sessions
in parallel at a time. We set a timeout of 20 minutes for each of the
phishing site crawling sessions. Overall, we visited 56,027 phishing
websites in a period of 43 days between March 20th, 2022 and May
1st, 2022.

Table 1: Summary of crawling results (count of unique URLs
and domains)

# OpenPhish
Seed URLs

# Filtered
Phishing URLs

# Crawled
Phishing URLs

# Crawled
Phishing SLDs

56,027 51,859 66,072 25,693

Live Phishing Feed: We obtain our seed phishing URLs from
OpenPhish [7], one of the largest commercial-grade repositories of
phishing websites (we subscribed to their premium data feed). The
feed is updated with new live phishing websites every 5 minutes. To
visit the newly reported URLs, we immediately spawn new crawler
instances and point them to the new phishing URLs.

To �lter out possible noise from the URL feed, we also check the
URLs against a phishing detection product from a leading security
vendor. As shown in Table 1, we started with a total of 56,027 phish-
ing URLs, and after �ltering we were left with 51,859 con�rmed
phishing URLs. Using perceptual hashing, in a way similar to previ-
ous work [37], we clustered the �rst page of each of these phishing
websites to identify phishing campaigns; namely, we group together
phishing websites that use the same brand and UI but are hosted
under di�erent domain names. In this way, we discovered 8,472
distinct phishing campaigns targeting over 381 brands. Of these,
3,214 campaigns consisted of less than 50 phishing sites each, and
only 11 campaigns included more than 500 phishing sites, thus
providing a widely diverse set of phishing websites and targeted
brands for analysis. The top 10 targeted brands in our dataset are
shown in Table 7 (in Appendix). Table 2 shows the top 10 business
categories that were targeted by phishing sites as obtained from the
“Industry sector” information provided by the OpenPhish premium
feed.

5 PHISHING UX AND UI ANALYSIS
In this section, we dig deeper into the approaches we used to mea-
sure each of the User Interface design and User Experience design
observed in modern phishing websites and present the results of
our analysis on UI and UX based characteristics of modern phishing
sites.
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Table 2: Top business categories targeted by phishing sites in
our dataset

Business Category Count of Phishing Sites
Online/Cloud Service 10,057
Financial 10,053
Social Networking 5,268
Logistics & Couriers 3,985
Email Provider 2,177
Cryptocurrency 2150
Telecommunications 1,408
e-Commerce 1,271
Payment Service 1,154
Gaming 657

5.1 UI Patterns
We start by analyzing characteristics of the visual layout and design
of the pages, including characteristics of the data stealing input
boxes.

5.1.1 Brand Impersonation vs. Cloning. In order to evade visual-
based phishing detectors, phishing sites that impersonate legitimate
websites do not necessarily need to clone their design, as discussed
in Section 2. To measure the number of phishing websites that
make this design choice, we leverage VisualPhishNet [11], which
provides a deep learning model trained to detect phishing sites that
closely resemble a set of legitimate sites’ visual design. We also
use the brand information provided with the phishing URL in the
OpenPhish premium feed as ground truth, and input the screenshot
of those phishing pages into VisualPhishNet’s model.

If the model is unable to correctly identify the legitimate web-
site targeted by the phishing page, we infer that the design of the
phishing site do not closely mimic the design of the imperson-
ated legitimate site. For instance, the phishing website shown in
the example Figure 1a (Section 2) shows a phishing page that im-
personates the DHL brand. However, the page is misclassi�ed by
VisualPhishNet as “Alibaba” rather than DHL (perhaps due to the
use of similar colors for the two brands). This is due to the fact that
the phishing page does not closely mimic the actual DHL website
(Figure 1b).

Table 3: Results showing the percentage of phishing sites
that do not clone visual design of Top 5 brands

Brand
Microsoft
OneDrive

Facebook,
Inc

DHL Airways,
Inc

Chase Personal
Banking Net�ix

% of
Sites 58% 84% 30% 12% 26%

Results. Given that the brand labels used to train VisualPhishNet
and those provided by OpenPhish are not consistent with each
other, reconciling the labels required manual e�ort. Therefore, we
performed an analysis on a subset of 250 phishing websites imper-
sonating 5 di�erent popular brands that we found in our dataset. For
each brand, we randomly selected 50 screenshots related to di�erent
phishing campaigns that targeted that speci�c brand (with a roughly
equal number of screenshots per campaign). Table 3 shows the per-
centage of web page screenshots that did not closely mimic their
legitimate brand counterparts. On average, 42% of the cases were

related to campaigns that do not clone the targeted brand’s visual
appearance. This further indicates the need to improve vision-based
phishing detection with additional context-based information.

5.1.2 Input Fields Distribution. Besides visual appearance, we also
measure two additional UI characteristics: (i) the distribution of
data types requested by phishing pages, and (ii) in how many cases
phishing sites use an obfuscated page design that requires the use
of OCR to be able to infer the data type associated to the input
boxes (see Section 4.1). To measure these traits, we leverage the
logs collected by our crawler regarding the type of input �eld it
identi�es and if OCR was applied to identify these types.

Results. Figure 7 shows the distribution of input �elds that were
found in real-world phishing pages. Besides categorizing the input
�elds into commonly requested �eld types requested by phishing
pages, we further grouped the �led types into higher-level cate-
gories, or context groups, including Login, Personal, Social, and
Financial information. As it can be seen, Email and Password are the
most requested information, in 28,736 and 35,762 pages respectively.
At the same time, our analysis found evidence of several other
types of user information being commonly requested by phishing
websites as well.
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Figure 7: Plot displaying distribution of input �eld categories
and their context groups across all phishing pages

In addition, we found that our crawler had to revert to using
OCR in 27% of the cases, in which it could not identify any useful
input �eld information via DOM element analysis. This indicates
that some type of UI obfuscation was likely used to hinder web
security crawlers from easily identifying the inputs requested by
the page. Also, in 12% of the cases, no “standard” submit button
was found in the page, and our crawler had to submit a form or
transition to the next page by interacting with button coordinates
identi�ed via visual object detection (see Section 5.3.2).
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5.1.3 Keylogging. Typically, a legitimate web page will send sensi-
tive user data to the server only after the user explicitly submits it
(e.g., by pressing Enter, clicking on the submit button, etc.). How-
ever, phishing sites may obviously bene�t from sending sensitive
information to the attacker’s server as soon as the user enters the
data into a phishing page. This enables the website to steal (partial)
information even if the user realizes midway that the site may be
unsafe to use. We measure in how many cases this design pattern
is implemented by checking how many phishing pages implement
keylogger behavior by using JS instrumentation to actively monitor
triggered keydown events.

Results. Our analysis revealed that 18,745 phishing sites were
monitoring keydown events using a listener and stored the data as
they were typed. Further, 642 of these sites made a network request
immediately after data was entered into the input element, and we
con�rmed that 75 among these sites sent a request that included
the data that was entered into the input �eld before any sort of
explicit submit action was performed. This demonstrates how some
attackers aim to steal the data as soon as it is entered, rather than
risk losing the data by waiting until the user submits the form (e.g.,
in case the user realizes the risk and decides not to click on the
submit button).

5.2 Multi-Stage Phishing Patterns
As shown in the examples in Section 2, modern phishing websites
may include a multi-stage phishing attack that includes (i) a user
veri�cation stage, (ii) multiple data stealing pages, and (iii) a termi-
nation page that congratulates or reassures the user that their data
has been correctly submitted and is safe. In this section we discuss
howwemeasure aspects related to the latter two characteristics and
their measurements result (user veri�cation patterns are discussed
in Section 5.3).

5.2.1 Multi-Page Web Forms. As discussed earlier, many phishing
websites do not only focus on harvesting users’ login credentials.
Phishing sites that request additional or di�erent information (e.g.,
�nancial data) tend to do so by mimicking users’ experience on
legitimate websites using multiple web forms/pages to request
di�erent types of data. To measure how many phishing sites use
this approach, we analyze the data collected by our intelligent
crawler (Section 4) and determine how many phishing websites
required the crawler to input di�erent types of forged data on
di�erent web pages.

Results. Of the 51,859 sites that were crawled, we found that
23,446 (45%) of the phishing sites required the crawler to input
di�erent types of data at di�erent stages of the attack. More no-
tably, we observed that some phishing sites employed up to 5 steps
(i.e., 5 di�erent pages) to steal user information. We measured the
distribution of phishing sites with a total of = pages, for = rang-
ing from 2 to 5 (see Figure 8) and found, for instance, that over
12,000 of these sites included 3 stages of phishing. Next, we also
measured the distribution of input �eld types across these multiple
steps. Figure 9 displays the counts associated with input �eld types
that were requested at di�erent stages of the multi-phishing sites.
It can be observed that login information was vastly requested in
the �rst two stages as compared to personal information, which

Figure 8: Plots displaying a histogram of total page count for
multi-step phishing sites

was instead requested more often in the later stages of phishing,
compared to the initial page. Similar trends can be observed for
social and �nancial data, which are frequently requested in the
middle stages of multi-stage phishing attacks. Note that the reason
for a relatively high occurrence of social and �nancial information
also in the �rst stage of the attacks may be due in part to our live
phishing feed pointing our crawler to start from an “internal” URL
of a multi-step phishing site, rather than its initial true page.

Figure 9: Plots displaying the Count of Field Categories found
at di�erent pages of the Phishing sites with multi-step phish-
ing. The percentage of URLs is calculated per �eld type to
indicate the distribution of that �eld across multiple steps
and not compared to other �eld types.

5.2.2 Double Login. Some phishing pages use a design pattern
referred to as “Double Login,” wherein once a user enters the login
credentials for the �rst time, the site requests the user to enter the
credentials again by pretending that the entered information was
incorrect. This happens regardless of the validity of the information
the user enters in the �rst page and appears to be used by phishing
sites to verify the information given by the users [5] and also to
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remove any suspicion from the user in case she intentionally entered
wrong information the �rst time (and it may also thwart security
crawlers). This “feature” is also advertised as a major selling point
in a number of phishing kits (e.g., see example in Figure 12, in
Appendix). In our measurements, we identify such cases of “Double
Login” by starting from the phishing sites that were found to use a
multi-page data stealing pattern. Then, we check if any of these sites
presented the crawler with two consecutive pages that both asked
for the same login credentials (e.g., data types such as username,
email, password, phone number, etc.).

Results. By applying a set of heuristics, such as �nding two con-
secutive pages that asked for the same set of login-related informa-
tion, we discovered a total of 400 phishing sites that used a Double
Login pattern.

5.2.3 UX Termination Pa�erns. Another aspect of phishing that
needs more attention is how the experience typically ends for the
victims. Interestingly, many modern phishing websites are designed
to present the user with a �nal reassuring message. Presumably,
this is done to prevent the user from realizing her information was
stolen and take immediate steps to change her credentials, block
credit cards, freeze her account, etc. Also, this may be a way to
prevent the phishing URL from being reported to security vendors.

To measure what type of phishing terminal page users may en-
counter, we �rst manually analyze a set randomly sampled terminal
pages collected by our crawler. Speci�cally, we consider only phish-
ing websites that exhibit a multi-page phishing pattern (as de�ned
earlier) and whose last page visited by our intelligent crawler did
not contain any input box (i.e., the terminal page did not request
and additional data from the user). Finally, we consider only the
last page visited by the crawler under the same domain name as
the domain of the initial phishing URL the crawler started from.
Among the remaining pages, we manually label 300 randomly cho-
sen pages under four di�erent categories: Success Message, Custom
Error Message, HTTP Error, and Phishing Awareness. Given this la-
beled dataset, we then train a bag-of-words text classi�er that can
automatically parse a web page, extract its text, and categorize it
among one of the four categories listed above. Our analysis led to
the following observations.

Results. While some phishing sites opt to terminate the UX by
showing again the same (e.g., last visited) page again to the user,
we observed two unique termination patterns. In the �rst of these
patterns, the site would redirect the user to a legitimate website,
which often coincides with the legitimate brand website targeted
by the phishing attack or with another popular websites such as
google.com. Table 4 displays the top legitimate e�ective second-
level domains that users would be redirected to at the end of the
attack. Overall, 7,258 distinct phishing sites were found to navigate
to a total of 680 distinct legitimate domains.

In the second pattern, a number of sites were found to display a
custom message to the user at the end of the attack. To measure at
scale the type of terminal messages displayed by phishing sites, we
�rst manually labeled 200 randomly selected samples and divided
them into 4 categories: success message, custom error message, HTTP
error, and phishing awareness. We then trained a machine learning
classi�er on these 200 labeled samples and tested it on a separate set

Table 4: Top Benign E�ective SLDs that were found in Termi-
nal Navigation Pattern

Second-level Domain Count Second-level Domain Count
microsoftonline.com 459 google.com 133
dhl.com 297 godaddy.com 118
glacierbank.com 249 citi.com 109
o�ce.com 219 bt.com 96
microsoft.com 218 america�rst.com 92
example.org 197 youtube.com 85
example.net 189 chase.com 76
mtb.com 188 yahoo.com 70
example.com 184 alaskausa.org 61
live.com 180 net�ix.com 47

of 100 manually labeled samples. The test results showed that our
multi-class classi�er achieved 97% accuracy (we also implemented
a reject option, whereby test samples that fell below a detection
threshold on the maximum class con�dence score of less than 0.65
were discarded). Overall, 5,403 of the multi-stage phishing sites
were found to display a �nal page with no input �elds present.
Among those, 966 were related to success messages, 125 to error
messages, 1,599 resulted in HTTP errors and 176 to fake phishing
awareness/training messages, as shown in the example in Figure 4.
Considering the sites that displayed phishing awareness/training
messages, we found that they could be grouped into 41 unique
campaigns displaying di�erent messages related to phishing attack
simulations. These messages appear to be designed to reassure the
users that they were almost phished, their data is safe and they
need not worry. Unfortunately, based on our crawler logs we could
observe that the data entered by the crawler in the previous steps
of the attack was indeed sent to the attacker’s server.

5.3 User Veri�cation Patterns
In this section, we focus on measuring user veri�cation patterns,
namely cases in which a phishing website presents the user with
some kind of simple challenge, before giving them access to the
pages containing the data stealing forms. As discussed earlier, this
design pattern can provide two bene�ts to the attackers: i) lend
a sense of legitimacy to the phishing website by mimicking user
veri�cation patterns also used on legitimate sites, and ii) thwarting
web security crawlers.

Obviously, our intelligent crawler is also hindered by some of
these user veri�cation patterns, such as CAPTCHAs. For instance,
given the large variety of possible di�erent CAPTCHA types that
may be used by phishing sites, it would be very di�cult to build a
generic system that automatically identi�es their presence, type,
and also then automatically solve the identi�ed CAPTCHA type.
Although there exist previous works that focus on solving speci�c
types of CAPTCHAs, to our knowledge no universal solver that
can break arbitrary CAPTCHA types has been proposed. Rather
than attempting to break CAPTCHAs or other user veri�cation
techniques, we instead focus on measuring how many phishing
sites implement user veri�cation and what type of veri�cation
patterns they deploy, as described below.

5.3.1 Click-Through. To measure the occurrence of click-through
pages, we start by considering only those phishing websites that

google.com
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Figure 10: Examples of CAPTCHAs found on recent phishing
sites.

were found to have a multi-stage pattern. Then, we select those web-
sites where a page visited by the crawler does not include any input
boxes, but the subsequently visited page does. This indicates cases
in which the crawler was able to identify an element to interact
with in the initial page (e.g., a button) that allowed it to successfully
navigate to the initial data-stealing page.

Results. Phishing websites that use a click-through pattern typi-
cally implement a multi-stage attack. Therefore, we measure the
click-through patterns only across such sites. As a result, we found
that 2,933 out of the 23,446 multi-stage phishing sites included a
click-through pattern. This accounts for 5.6% of the total number of
phishing sites that we analyzed. Furthermore, 2,713 of these were
found on the �rst page encountered by the crawler for a given site,
while 220 of them were found in the internal pages (past the �rst
one) of multi-stage phishing sites.

5.3.2 CAPTCHAs. To measure whether a phishing website makes
use of CAPTCHAs and of what type, we follow these steps. To
this end, we �rst attempt to determine if the website uses a pop-
ular JavaScript library for known CAPTCHAs, such as Google’s
ReCaptcha [10], Hcaptcha [9], etc. We refer to this broad category
as “known CAPTCHAs.” Then, we also attempt to determine if a
phishing website includes a “custom CAPTCHA,” namely a real
CAPTCHA that does not rely on a speci�c popular CAPTCHA
library. This latter task is clearly not straightforward because it
requires us to visually detect the presence of a CAPTCHA challenge,
which in turn can be one of many di�erent types.

To visually detect the presence of a CAPTCHA, we leverage a
deep learning-based approach. Speci�cally, we use a pre-trained
Faster R-CNN [34] object detection model from Facebook’s Detec-
tron2 library [4], and �ne-tune it with a large training dataset of
web pages that we generated containing CAPTCHAs. To this end,
we �rst collected an extensive and diverse collection of CAPTCHA
challenge images from a publicly available CAPTCHA dataset [40]
(see examples in Figure 10). Then, we use a large collection of brand
logos provided by Phishpedia [24] to automatically generate a set
of web pages that contain a logo, a CAPTCHA challenge image,
an input box and a submit button (in case of simulated text-based
CAPTCHA). Some examples of CAPTCHA pages we generated are
shown in Figure 13, in Appendix. Given that for each generated web
page we know the exact location of elements including CAPTCHAs,
we can create a dataset with the label of the element and its bound-
ing box. We then use this labeled dataset to �ne-tune the Faster
R-CNN object detection model. For the hyper-parameters, we set
the base learning rate, “BASE_LR”, to 0.001, the maximum iterations
parameter, “MAX_ITER” to 3000 and “BATCH_SIZE_PER_IMAGE”
parameter as 64.

Table 5: Captcha Detection Model results reporting Average
Precision(AP) per class for testing set

Text-based CAPTCHAS
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Count 315 315 315 315 315 315
Average Precision 91.0 99.4 98.9 95.8 97.5 98.5

Visual CAPTCHAs Button Logo
Type 1 Type 2

Count 420 315 1324 1370
Average Precision 80.7 92.1 89.2 77.1

Model Evaluation: To evaluate the model that detects custom
captchas, we �rst train it on 10,000 arti�cially generated images that
contain a mix of di�erent types of CAPTCHAs, logos and buttons
as explained above. Then, for validation and testing, we used a
di�erent set of 1,000 and 2,000 arti�cially generated web pages,
respectively. Our experiments resulted in an average precision of
91.9% and 92.0% for the validation set and test set, respectively.
Table 5 shows the per-class precision obtained for the test set.

Given that the model did well on the test set, we then proceed
to test the model on a set of real-world phishing images obtained
from crawling during our experimentation phase. On providing
images to the model, it outputs the bounding box coordinates of any
CAPTCHAs, buttons or logos that it detects. Unlike the test images
that we generated, real-world images are not annotated. Therefore,
we manually inspected the results to verify the model’s prediction.
Considering that websites can be styled in multiple ways, to avoid
confusion due to noise generated by additional page elements, we
additionally apply the following heuristics to �lter misclassi�ed
CAPTCHA elements.

(1) When themodel detects a text-based CAPTCHA,we leverage
the bounding boxes outputted by the model and check if
there is an input �eld located next to the detected CAPTCHA.
If no such input �eld was found in its vicinity, then we
consider those as misclassi�ed. In the case that there was
an input �eld, we ensure that that crawler hasn’t already
mapped it to any other valid category such as name, email,
etc.

(2) In case of visual captchas, we slice the part of the image
identi�ed as visual captcha using the given bounding box
and the input image. Next, we determine if this portion of the
image is similar to at least 3 of visual captchas that exist in
our training dataset. To calculate similarity, we compare the
distance between pHash of the prediction portion of image
and pHashes of corresponding class’s image in the dataset. If
there were at least 3 instances where the distance calculated
is below a threshold (set to 20 in our case), only then we
consider the prediction valid.

We had collected 7,814 unique images from our crawling. After
labelling these images manually, we found 123 of these images to
have some form of CAPTCHAs (visual or text-based). On feeding
these images to the model, we initially obtained a precision of 89.2%
and recall of 87.8%. After applying the heuristics-based �ltering, we
were able to discard all false positives, since they did not satisfy the
rules described above. As a result, ourmodel’s precision increased to
100% while the recall remained unchanged at 87.8%, thus denoting
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that our model missed few cases of captchas that are signi�cantly
dissimilar to ones that were seen during training. However, to
improve this, the model could be retrained to detect new forms of
CAPTCHA.

Results. Based on the information collected by our crawler, we
can measure the prevalence of both known and custom CAPTCHAs
on phishing websites. We distinguish between three common types
of CAPTCHAs: text-based, visual-based or invisible (i.e., behavior-
based). Considering all 51,859 phishing websites we crawled, we
found evidence of CAPTCHA deployment in 2,608 of them. Among
these, we found that 2,496 phishing sites contained JavaScript code
related to known CAPTCHAs, such as Google Recaptcha (1,856
sites) and hCaptcha (640 sites). Interestingly, phishing sites that
include third-party CAPTCHA libraries may expose themselves to
being indexed and crawled by the library’s provider (e.g., Google),
and thus risk early detection by web security companies.

We also noticed that in most cases in which known CAPTCHA
libraries were used, they provided visual-based or behavior-based
CAPTCHAs. At the same time, text-based CAPTCHAs appeared
to be mostly custom CAPTCHA schemes. Therefore, to more accu-
rately identify custom CAPTCHAs, we used our object detection
model. Overall, our object detector identi�ed 34 text-based custom
CAPTCHAs and 78 visual-based custom CAPTCHAs.

5.3.3 Multi-Factor Authentication. Recently, some phishing web-
sites have started to request users to enter a two-factor authenti-
cation (2FA) code sent via email or text message. This strategy is
used for instance by MITM phishing toolkits [23]. In this study,
we do not attempt to study how MTIM phishing works, as done in
previous work [23]. Rather, we are concerned only with measuring
how many phishing websites request a form of 2FA. To �nd such
cases, we focus our attention on phishing pages that, according to
our intelligent crawler, ask for a code data type. Then, perform a
post-processing analysis on the logs collected by the crawler from
those pages and search for pages whose input box labels include
a keyword related to 2FA (we compile a set of common keywords
based on manual analysis of sample 2FA pages).

Figure 2 shows an example of modern phishing website that
request a 2FA code. After our intelligent crawler navigated correctly
through the �rst few pages (including two click-through pages and
di�erent data-stealing pages) it is presented with a request for a
“one-time code.” It turns out that this was a fake 2FA. In fact, our
crawler identi�ed in real time that the input box was requesting
a code, and simply generated and submitted a random sequence
of numbers (using the Faker library), and it was redirected to the
terminal “success” page.

Results. To measure if this trait is used in any of the analyzed
sites, we �rst �lter those pages containing “Code” input �elds. Next,
we analyze those �elds and select those that contains keywords
related to two-factor authentication, such as ‘OTP’, ‘SMS’, ‘2FA’, etc.
As it can be seen from Figure 7, there were 8,893 sites that contained
one or more input �elds identi�ed as “Code.” Among those, we
found 1,032 of them that requested a one-time authentication code
(via SMS). A few examples are shown in Figure 14 (in appendix).

6 DISCUSSION OF LIMITATIONS
As noted in [26], simply using features such as visual similarity
to a legitimate web page or brand logo detection may not be su�-
cient for accurate phishing website detection. Instead, the authors
propose to combine brand similarity with automatic identi�cation
of credential-taking (or stealing) intentions. However, login cre-
dentials are not the only input types that phishing sites request
from users, as shown in our measurement results. In general, the
ability to inspect a web page and automatically understand what
it is asking for, as done by our intelligent crawler, may represent
an additional powerful feature to further boost the accuracy of
phishing detection systems such as [26].

Another possibility is to embed a system similar to our crawler
in the browser, to “test” suspected phishing pages in real time. For
instance, assume a user visits a web page that is classi�ed (e.g.,
using a system such as VisualPhishNet [11] or Phishpedia [24]) as
suspicious; namely, a possible phishing attack. Rather than imme-
diately raising a potentially false alert, the browser could allow the
user to interact with the page. However, if the page includes input
�elds and the user starts entering data into the form, the browser
could temporarily bu�er this data without immediately passing it
to the page. At the same time, in the background the browser could
use a system similar to our intelligent crawler to interact with the
page, investigate the UI/UX, and determine whether this is actually
a phishing website. If yes, the user will be alerted, and since the data
was bu�ered by the browser and not passed to the page, the user’s
information will be safe. If not (i.e., the page is determined to be be-
nign), the browser could reload the original page the user started to
interact with and transparently enter the previously bu�ered user
data. Obviously, such a system would need to minimize latency in
obtaining the �nal classi�cation result, to avoid impacting usability.
However, users are relatively slow to enter data, and the detection
system could operate in the background while the user is allowed
to interact with a bu�ered page. While potentially promising, these
ideas would require signi�cant browser engineering e�orts and
therefore, we leave them to future research.

Perfectlymimicking the behavior of a real user that interacts with
a phishingwebsite is obviously a very challenging task. In particular,
it is very di�cult for an automated system to interpret what a web
page may be asking the user to do, especially when the system
can encounter an unbounded variety of websites and be faced
with adversarial web design patterns. Nonetheless, our intelligent
crawler and data analysis approximate user interpretation of, and
interaction with, web pages by using a combination of page DOM
analysis, visual analysis (e.g., OCR), deep learning-based computer
vision and heuristics informed by in-depth domain knowledge of
how phishing pages are constructed. Obviously, our classi�ers and
heuristics are not perfect, and thus they can make mistake that
impact the exact measurement results. For instance, we noticed that
our CAPTCHA object detection model failed to identify a number
of visual-based CAPTCHA instances generated by the hCaptcha
library. After analyzing the misclassi�ed cases, we found that the
missed CAPTCHAs looked all alike and contained a dark variant of
hCaptcha that was not encountered during training data collection
and labeling. This points to the fact that additional e�ort is needed
to collect and label training data for the crawler’s machine learning
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components. However, it is important to notice that, as shown in
our evaluation, the classi�ers we built are su�ciently accurate to
be used in practice. And while our measurements cannot be 100%
accurate, we are con�dent that they accurately capture the “big
picture” trends and characteristics of modern phishing websites.
Ultimately, we believe that the �ndings from our study can be used
to signi�cantly strengthen future defenses, including state-of-the-
art phishing detectors such as [26].

Another limitation of our measurement framework is due to the
fact that we currently focus only on phishing websites that use
the English language. However, with more engineering e�ort our
tools can be extended to support di�erent languages. For instance,
this would include training the input �eld classi�er with input
text labels from languages other than English. We plan to explore
this extension of our current framework in future work. Also, our
crawler may further bene�t from directly learning how real users
interact with web pages. For instance, it may be possible to perform
a user study in which users are asked to browse both legitimate
and phishing-like websites, to record the set of behaviors (mouse
movements, web page components they interact with, etc.) they
exhibit. This dataset of user behaviors could then be used to train
more advanced models that can imitate human actions in a more
comprehensive way.

One important obstacle for our crawler is represented by phish-
ing websites that use man-in-the-middle (MITM) phishing kits [23].
In this case, the user (and thus the crawler) would be presented
with content fetched from the legitimate website targeted by the
phishing attack. Therefore, the crawler would need to use valid
login credentials to move forward. In addition, the crawler may
also need to bypass a multi-factor authentication code, such as a
one-time password (OTP) sent via SMS. These transparent phishing
attacks and attacks that require OTPs are outside the scope of our
crawler, as more specialized measurement and defense systems
would be needed in such cases [23].

7 ETHICAL CONSIDERATIONS
To perform our study, we automatically interacted with tens of
thousands of malicious websites, including submitting forged data.
Thesewebsites are all reported as phishing byOpenPhish (openphish.
com), a commercial-grade phishing URL feed. In addition, to remove
potential noise from the URL feed we leveraged a commercial-grade
phishing detection system provided by a leading cybersecurity com-
pany. In addition, although a small amount of noisy (legitimate)
URLs in our feed may be unavoidable, our crawler does not cause
any harm to the websites it interacts with, besides submitting syn-
tactically correct but invalid user information.

8 RELATEDWORK
The problem of phishing has been researched for more than two
decades. Over the years, several of the works have been focused on
detecting phishing attacks with di�erent techniques such as visual
similarity [11, 13, 20, 46] and machine learning [25, 27, 44]. More
recently, multiple works [14, 15, 26, 38, 39, 41, 43] have focused on
using deep learning to classify phishing pages with higher accuracy.
In terms of practical client-based defenses against phishing, block-
listing [2, 35] remains the de-facto front line defense. Blocklists, as

well as the aforementioned detectors, typically rely upon on web se-
curity crawlers to gather data, thus prompting security researchers
to evaluate them for attacks [12, 28, 30, 31]. The intelligent crawler
system we developed in this paper can help improve the coverage
of these security crawlers by enabling them to interact with the
phishing sites like a potential victim would.

Some recent works have also begun to look at measuring and
understanding in-the-wild phishing attacks from di�erent perspec-
tives such as phishing kits [16, 19, 29], man-in-the-middle phishing
techniques [23], client-side cloaking techniques [45], credential
stealing mechanisms [33]. In this paper, we analyzed in-the-wild
phishing pages from a di�erent vantage point by capturing the
end-to-end experience of victims on a large number of real world
phishing sites. It is to be noted that [33] also attempted to automat-
ically interact with phishing sites with the help of some heurisitcs
and OCR techniques to automatically supply credentials. However,
their work was limited to analyzing the data transfer of only the
login credentials which is only a small part of the experience that a
phishing victim can be potentially subject to. On the other hand,
our work is focused on automatically recreating the complete vir-
tual experience of a victim for each site, thereby gaining a deep
understanding of all information they attempt to steal from victims
as well as the UI experiences that the victims are subject to. Besides
serving as a measurement tool, this system can also be useful in en-
abling new kinds of mitigation measures by enhancing prior works
such as [32]. For example, the loading of a third-party’s HTTP re-
sources (such as a bank) on the UX termination page of a phishing
site can be used as an alarm signal for our proposed crawler to
visit it. If our crawler observes that the site steals social security
numbers, the third-party organization can immediately forward the
victim’s IP address to government agencies for pursuing mitigation
measures.

9 CONCLUSION
In this paper, we proposed a novel methodology to study phishing
at scale by combining browser automation withmachine learning to
simulate user interactions with phishing pages and explore their UX
and UI characteristics. Using our intelligent crawler, we were able
to explore over 50,000 phishing websites and automatically identify
a number of visual and UX trends used by modern phishing sites
to lend their site an air of legitimacy. Accordingly, we found that
many phishing sites take users through multiple phishing stages to
steal more than just their login credentials, and leverage a number
of mechanisms to evade security crawlers while making the site
believable to the end users. The measurement results we presented
can further aid in the development of more accurate and robust
phishing detectors.
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Table 6: Field Classi�er results reporting Precision, Recall
and F1-score. The last row reports the average F1-score across
all categories.

Field Category Precision Recall F1-Score Count
Login Data

Email 0.92 1 0.95 23
UserId 0.71 0.83 0.76 6
Password 0.97 0.94 0.95 36

Personal Data
Name 0.92 0.90 0.91 52
Address 1 0.88 0.94 18
Phone 0.95 1 0.97 23
City 0.91 0.91 0.91 12
State 0.8 1 0.88 5
Question 1 1 1 10
Answer 1 1 1 14
Date 0.77 0.7 0.73 10
Code 1 0.95 0.97 21

Social Data
License 1 0.6 0.8 5
SSN 0.81 0.81 0.81 11

Financial Data
Card 0.85 0.92 0.88 25
ExpDate 0.9 1 0.94 18
CVV 0.9 0.69 0.78 13

Other Data
Search 1 0.87 0.93 8

Overall results 0.90 310

Figure 12: Screenshot of a Description of a Real Phishing Kit
with Double Login Feature

Table 7: Top Brands that were targeted by Phishing Sites in
our dataset

Targeted Brand Count of Phishing Sites
O�ce365 5,351
DHL Airways, Inc. 3,069
Facebook, Inc. 2,335
WhatsApp 2,257
Tencent 1,701
Crypto/Wallet 1,687
Outlook 1,437
La Banque Postale 1,131
Chase Personal Banking 1,071
M & T Bank Corporation 1,015

Figure 13: Examples of Images that were generated to train
Object DEtection Model

Features. In Proceedings of the 2014 IEEE 13th International Conference on Trust,
Security and Privacy in Computing and Communications (TRUSTCOM ’14). IEEE
Computer Society, USA, 189–196. https://doi.org/10.1109/TrustCom.2014.28

A ADDITIONAL EXAMPLES
function get_elements (){

var recs = [];
var e = document.getElementsByTagName(�*�);
for (var i=0; i<e.length; i++) {

var rect = e[i]. getBoundingClientRect ();
recs[i]={}
if (rect != undefined){

recs[i].right = rect.right;
recs[i].top = rect.top;
recs[i]. bottom = rect.bottom;
recs[i].left = rect.left
recs[i]. height = rect.height

}
recs[i]. innerText = e[i]. textContent ;
recs[i].tag = e[i]. tagName != undefined? e[i

]. tagName : ��;
recs[i].id = e[i].id!=null?e[i].id:�None�;
recs[i].name = e[i].name!=null?e[i].name:�

None�;
recs[i].type = e[i].type ;
recs[i].text = e[i].Text ;
recs[i].value = e[i]. value ;
recs[i]. visibility = e[i]. style != undefined ? e[i

].style.visibility : �null� ;
recs[i]. placeholder= e[i]. placeholder !=null?e[i].

placeholder !=��?e[i]. placeholder:�null�:�null�;
}
return recs;

}

Listing 1: Template for count-based policies

https://doi.org/10.1109/TrustCom.2014.28
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Figure 14: Few Examples of Phishing pages that employed
two-factor authentication and requested for SMS code.

Figure 11: Example of phishing website that does not require
login credentials.
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